首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive and selective chemical sensor was prepared based on metallic copper‐copper oxides and zinc oxide decorated graphene oxide modified glassy carbon electrode (Cu?Zn/GO/GCE) through an easily electrochemical method for the quantification of bisphenol A (BPA). The composite electrode was characterized via scanning electron microscopy (SEM), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of BPA in Britton‐Robinson (BR) buffer solution (pH 7.1) was examined using cyclic voltammetry (CV). Under optimized conditions, the square wave voltammetry (SWV) response of Cu?Zn/GO/GCE towards BPA indicates two linear relationships within concentrations (3.0 nmol L?1?0.1 μmol L?1 and 0.35 μmol L?1?20.0 μmol L?) and has a low detection limit (0.88 nmol L?1). The proposed electrochemical sensor based on Cu?Zn/GO/GCE is both time and cost effective, has good reproducibility, high selectivity as well as stability for BPA determination. The developed composite electrode was used to detect BPA in various samples including baby feeding bottle, pacifier, water bottle and food storage container and satisfactory results were obtained with high recoveries.  相似文献   

2.
A layer-by-layer assembled of a polypyrrole and polyluminol was synthesized through the electrodeposition of pyrrole and luminol in acidic medium on a graphite electrode. The electrode was then modified by casting titanium dioxide (TiO2) nanoparticles on its surface for enhancing electrochemiluminescence of luminol. The properties of this electrochemiluminescence sensor were studied by cyclic voltammetry, electrochemical impedance spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results demonstrated that the modification of this electrochemiluminescence sensor shows sensitive response for the determination of hydrogen peroxide. Figures of merit include broad linearity from 1?pmol L?1 to 4?µmol L?1 (R2?=?0.996) with a limit of detection as low as 0.40?pmol L?1 at a signal-to-noise ratio of three and good reproducibility with relative standard deviation of 4% for the determination of a 400?nmol L?1 hydrogen peroxide solution (n?=?4), along with favorable long-term stability. The presence of glucose, citric acid, uric acid, dopamine, and ascorbic acid at concentrations as high as 100?nmol L?1 of H2O2 did not produce any electrochemiluminescence signals, which demonstrates the selective nature of this modified electrode. The sensor was also used for the determination of H2O2 in mouthwash formulations and dental whitelight gels.  相似文献   

3.
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples.  相似文献   

4.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

5.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

6.
A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10?7 to 2.56 × 10?6 mol L?1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L?1 and sensitivity was 6.3 µA µmol L?1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.  相似文献   

7.
A selective, sensitive novel electrochemical sensor for detection of methyl parathion on the preparation of a carbon dots (C-dots)/ZrO2 nanocomposite was developed. The C-dots/ZrO2 nanocomposite was fabricated using electrochemical deposition onto a glassy carbon electrode and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. The optimum parameters such as effect of pH, accumulation time, accumulation potential, scan rate, effect of amount of C-dots and effect of amount of ZrO2 were investigated. The C-dots/ZrO2 modified glassy carbon electrode allowed rapid, selective determination of methyl parathion in rice samples by adsorptive stripping voltammetry. The stripping response was highly linear over the methyl parathion concentrations ranging from 0.2 ng mL?1 to 48 ng mL?1, with a detection limit of 0.056 ng mL?1. This novel electrochemical nanocomposite-based electrochemical sensor was successfully applied for the detection of methyl parathion in rice samples.  相似文献   

8.
《Electroanalysis》2017,29(12):2839-2846
In this paper, a glassy carbon electrode (GCE) was modified with polyzincon. The modified electrode was used as a simple, inexpensive and highly sensitive electrochemical sensor for the determination of organophosphorus pesticide fenitrothion. To fabricate the electrochemical sensor, GCE was immersed in 0.10 mmol L−1 zincon solutions at pH 7.0 and then successively scanned between −1.00 to 2.20 V (vs . Ag/AgCl) at a scan rate of 70 mV s−1 for six cycles. The morphology and structure of the polyzincon were studied with atomic force microscopy and scanning electron microscopy. A comparison of the electrochemical behavior of fenitrothion on the unmodified and polyzincon modified‐GCE showed that in the modified electrode not only the oxidation peak current increased, but also the overpotential shifted to lower one. The experimental conditions such as sample solution pH, accumulation potential, and time were optimized. The differential pulse voltammetric responses of fenitrothion at potential about −0.60 V was used for the determination of fenitrothion. The peak current increased with increasing the concentration of fenitrothion in the range of 5 to 8600 nmol L−1 with a detection limit of 1.5 nmol L−1. Finally, the electrochemical sensor was used for the analysis of fenitrothion in water and fruit samples.  相似文献   

9.
A novel electrochemically treated ZrOCl2 doped carbon paste composite electrode was easily prepared by directly incorporating ZrOCl2 into graphite powder after with an electrochemical treatment for the first time. This sensor showed sensitive voltammetric sensing for daidzein. The surface morphology and electrochemical properties of the electrode were investigated by scanning electron microscopy and cyclic voltammetry. The electrochemical behavior of daidzein was investigated in detail. Under the optimized conditions, the response currents were linearly related to daidzein concentrations in the range of 3×10?8 to 2×10?6 mol L?1 with a detection limit of 1×10?8 mol L?1 in phosphate buffer solution with pH 2.5. The proposed sensor was also applied to the determination of daidzein in pueraria, pharmaceutical preparations and human uric sample with satisfactory results.  相似文献   

10.
Gold nanoparticles stabilized in poly(allylamine hydrochloride) (AuNP‐PAH) were synthesized, characterized and applied in the development of a new sensor for the determination of vanillin by square‐wave voltammetry. Under optimized conditions, the calibration curve showed a linear range for vanillin of 0.90 to 15.0 µmol L?1, with a limit of detection of 55 nmol L?1. The sensor demonstrated acceptable selectivity and stability, as well as good intra‐day and inter‐day repeatability and electrode‐to‐electrode repeatability (with relative standard deviations of 3.5, 4.5 and 3.9 %, respectively). The sensor was successfully applied in the determination of vanillin in different commercial samples.  相似文献   

11.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

12.
A novel ion selective carbon paste electrode for Cd2+ ions based on 2,2′-thio-bis[4-methyl(2-amino phenoxy) phenyl ether] (TBMAPPE) as an ionophore was prepared. The carbon paste was made based on a new nano-composite including multi-walled carbon nanotubes (MWCNTs), nanosilica and room-temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The constructed nano-composite electrode showed better sensitivity, selectivity, response time, response stability and lifetime in comparison with typical Cd2+ carbon paste sensor for the successful determination of Cd2+ ions in water and in waste water samples. The best performance for nano-composite sensor was obtained with an electrode composition of 18% TBMAPPE, 20% BMIM-PF6, 48% graphite powder, 10% MWCNT and 4% nanosilica. The new electrode exhibited a Nernstian response (29.95?±?0.10?mV?decade?1) toward Cd2+ ions in the range of 3.0?×?10?8 to 1.0?×?10?1?mol?L?1 with a detection limit of 7.5?×?10?9?mol?L?1. The potentiometric response of prepared sensor was independent of the pH of test solution in the pH range 3.0 to 5.5. It had a quick response with a response time of about 6?s. The proposed electrode showed fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions.  相似文献   

13.
An electrochemical sensor was developed for determination of hydrogen peroxide based on nanocopper oxides modified carbon sol‐gel or carbon ceramic electrode (CCE). The modified electrode was prepared by electrodeposition of metallic copper on the CCE surface and derivatized in situ to copper oxides nanostructures and characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD) techniques. The modified electrode responded linearly to the hydrogen peroxide (H2O2) concentration over the range 0.78–193.98 µmol L?1 with a detection limit of 71 nmol L?1 (S/N=3) and the sensitivity of 0.697 A mol?1 L cm?2. This electrode was used as selective amperometric sensor for determination of H2O2 contents in hair coloring creams.  相似文献   

14.
A voltammetric sensor was fabricated by applying a Nafion and multi-walled carbon nanotubes (MWCNTs) composite film on the surface of a carbon ionic liquid electrode (CILE), which was prepared by mixing 1-butyl-3-methylimidazolium hexafluorophosphate with graphite powder. The electrochemical behavior of adenine on the Nafion-MWCNTs/CILE was investigated in pH 5.5 buffer solution. Adenine showed an irreversible adsorption-controlled oxidation reaction with enhanced electrochemical response, which was due to the presence of high conductive MWCNTs on the CILE surface. The electrochemical parameters of adenine electro-oxidation were determined, and the experimental conditions were optimized. Under the optimal conditions, the oxidation peak current was linear to the adenine concentration over the range of 1.0?×?10?7 to 7.0?×?10?5 mol L?1 with a detection limit of 3.3?×?10?8 mol L?1 (signal/noise?=?3). The electrode showed good stability and selectivity, and was further applied to milk powder samples with satisfactory results.  相似文献   

15.
A glassy carbon electrode (GCE) was modified with a thin layer of multiwalled carbon nanotubes (MWCNTs) and subsequently, electrochemically deposited poly‐pyrrole. The electrochemical behavior of mesalazine was studied on the surface of the modified electrode by applying linear sweep voltammetry (LSV). The electropolymerization process and the electrochemical response toward mesalazine were investigated in the presence of different aromatic anion dopants including, benzenesulfonic acid (BSA), 1,3‐benzenedisulfonic acid (1,3‐BDSA), 1,5‐naphthalenedisulfonic acid (1,5‐NDSA) and new coccine (NC). By using 1,5‐NDSA as dopant, a significant increase (~418 times) in the peak current of mesalazine was observed, in comparison to the bare GCE. Experimental variables such as drop size of the cast MWCNTs suspension, pH of the supporting electrolyte, accumulation conditions and the number of scans in the electropolymerization process were optimized by monitoring the LSV responses of mesalazine. Under the optimum conditions, two linear dynamic ranges of 0.01–0.1 µmol L?1 and 0.1–1.0 µmol L?1 with a detection limit of 3 nmol L?1 were resulted for the voltammetric determination of mesalazine. The prepared electrode showed high sensitivity, stability and good reproducibility for determination of mesalazine. These properties made the prepared sensor suitable for the determination of mesalazine in pharmaceutical and clinical preparations.  相似文献   

16.
A novel amperometric sensor and chromatographic detector for determination of parathion has been fabricated from a multi-wall carbon nano-tube (MWCNT)/Nafion film-modified glassy-carbon electrode (GCE). The electrochemical response to parathion at the MWCNT/Nafion film electrode was investigated by cyclic voltammetry and linear sweep voltammetry. The redox current of parathion at the MWCNT/Nafion film electrode was significantly higher than that at the bare GCE, the MWCNT-modified GCE, and the Nafion-modified GCE. The results indicated that the MWCNT/Nafion film had an efficient electrocatalytic effect on the electrochemical response to parathion. The peak current was proportional to the concentration of parathion in the range 5.0×10–9–2.0×10–5 mol L–1. The detection limit was 1.0×10–9 mol L–1 (after 120 s accumulation). In high-performance liquid chromatography with electrochemical detection (HPLC–ED) a stable and sensitive current response was obtained for parathion at the MWCNT/Nafion film electrode. The linear range for parathion was over four orders of magnitude and the detection limit was 6.0×10–9 mol L–1. Application of the method for determination of parathion in rice was satisfactory.  相似文献   

17.
A modified carbon paste electrode was prepared by incorporating the TiO2 nanoparticles in the carbon paste matrix. The electrochemical behavior of gallic acid (GA) is investigated on the surface of the electrode using cyclic voltammetry and differential pulse voltammetry. The surface morphology of the prepared electrode was characterized using the scanning electron microscopy. The results indicate that the electrochemical response of GA is improved significantly at the modified electrode compared with the unmodified electrode. Furthermore, the capabilities of electron transfer on these two electrodes were also investigated by electrochemical impedance spectroscopy. Under the optimized condition, a linear dynamic range of 2.5?×?10?6 to 1.5?×?10?4?mol?L?1 with detection limit of 9.4?×?10?7?mol?L?1 for GA is obtained in buffered solutions with pH 1.7. Finally, the proposed modified electrode was successfully used in real sample analysis.  相似文献   

18.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

19.
《Electroanalysis》2018,30(8):1678-1688
In this work, an electrochemical sensor was constructed by applying two successive thin layers of glycine‐carbon nanotubes mixture and β‐cyclodextrin (CNTs‐Gly)/CD over glassy carbon electrode surface for some neurotransmitters determination. A host‐guest interaction between CD and neurotransmitters molecules is expected and resulted in enhanced sensitivity, selectivity and stability of sensor response. Other components of the sensor are crucial for the unique electrochemical response. Carbon nanotubes allowed large surface area for glycine distribution that provided hydrogen bonding to CD moieties and contributed to facilitated charge transfer. It was possible to determine 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the linear range of 0.1 μmol L−1 to 80 μmol L−1 with detection limit of 9.40 nmol L−1, quantification limit of 31.5 nmol L−1 and sensitivity of 4.16 μA/μmol L−1. The proposed sensor was applied in synthetic cerebrospinal fluids samples using random standard addition method. Also, the proposed sensor was used to determine DOPAC in presence of common interferences and acceptable recovery results were achieved for its analysis in real blood serum. Figures of merit for (CNTs‐Gly)/CD composite in terms of precision, robustness, repeatability and reproducibility were reported.  相似文献   

20.
A sensitive electrochemical method for square‐wave voltammetric detection of organophosphate (OP) compounds was developed based on zirconia (ZrO2) nanoparticles modified electrode. The electrode was fabricated using electrochemical deposition and characterized by scanning electron microscopy (SEM), which confirmed the successful formation of nanoparticles. Due to the strong affinity of ZrO2 with the phosphoric group, nitroaromatic OPs can strongly bind to the surface of ZrO2 nanoparticles (ZrO2NPs). Under optimized operational conditions, SWV was employed for Omethoate (a model of OP compounds) detection with 5 min absorption, which showed a wide detection range from 98.5 pmol·L?1 to 985 nmol·L?1, with a detection limit as low as 52.5 pmol·L?1. This electrochemical sensor has good selectivity, stability and reproducibility, and great potential in the detection of OP compounds in agriculture area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号