首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
静态箱法气相色谱法自动检测农田N2O排放   总被引:14,自引:0,他引:14  
N2O自动观测系统由微机控制电路和气路,使采样箱、气相色谱仪(GC)和积分仪自动工作,系统可连续采样分析,自动存储色谱数据,并可同时测定存储温度和辐射等气象数据,系统从放置于田间可自动开关箱盖的采样箱中,依次抽取空气样品,经除水、CO2处理后送入气相色谱仪分析N2O浓度,箱中浓度随时间的变化计算N2O的排放通量。  相似文献   

2.
This article reports on the development of a new full evaporation (FE) headspace technique based on multiple headspace extraction (MHE). Using multiple headspace extraction procedures, the sample volume used in the headspace can be dramatically increased, thereby significantly enhancing the sensitivity. The technique was applied to the quantification of ethanol. The results showed that up to 0.2 mL of ethanol solution can be used in full evaporation HS-GC analysis by adding multiple headspace extraction procedures. The sensitivity for ethanol content was ten times higher than that in conventional full evaporation HS-GC measurement without using multiple headspace extraction procedures. The present MHE-FE headspace analytical technique is accurate and automated and has great potential for the application in determining volatile analytes in aqueous samples.  相似文献   

3.
We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full‐evaporation‐based headspace analysis.  相似文献   

4.
Summary The role of the volume of the sample and the sample vial in equilibrium headspace-gas chromatography is discussed. A new term, thesample phase fraction (S) is introduced. It is shown that if the value of S is kept constant, the vial's volume has no influence on the sensitivity of the headspace analysis (which is proportional to the concentration of the analyte in the headspace). In a given headspace sampling system, concentration of the compound of interest in the headspace (c G * ) at equilibrium is related to the value of S: a higher S will increase c G * . However, the influence is important only in the case of low distribution coefficients: in the case of higher distribution coefficients this influence is negligible. This conclusion is also true for small changes in the sample volume in duplicate analyses: exact reproducibility of the sample volume is important only in the case of low distribution coefficient values.  相似文献   

5.

Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L−1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L−1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L−1.

  相似文献   

6.
Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L?1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L?1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L?1.  相似文献   

7.
Several fully automated liquid-phase microextraction (LPME) techniques, including static headspace LPME (HS-LPME) (a drop of solvent is suspended at the tip of a microsyringe needle and exposed to the headspace of the sample solution), exposed dynamic HS-LPME (the solvent is exposed in the headspace of sample vial for different time, and then withdrawn into the barrel of the syringe. This procedure is repeated a number of times), unexposed dynamic HS-LPME (the solvent is moved inside the needle and the barrel of a syringe, and the gaseous sample is withdrawn into the barrel and then ejected), static direct-immersed LPME (DI-LPME) (a drop of solvent is suspended at the tip of a microsyringe needle and directly immersed into the sample solution), dynamic DI-LPME (the solvent is moved inside the needle and the barrel of a syringe, and the sample solution is withdrawn and ejected), and two phase hollow fiber-protected LPME (HF-LPME) (a hollow fiber is used to stabilize and protect the solvent), auto-performed with a commercial CTC CombiPal autosampler, are described in this paper. Critical experimental factors, including temperature, choice of extraction solvent, solvent volume, plunger movement rate, and extraction time were investigated. Among the three HS-LPME techniques that were evaluated, the exposed dynamic HS-LPME technique provided the best performance, compared to the unexposed dynamic HS-LPME and static HS-LPME approaches. For DI-LPME, the dynamic process can enhance the extraction efficiency and the achieved method precision is comparable with the static DI-LPME technique. The precision of the fully automated HF-LPME is quite acceptable (RSD values below 6.8%), and the concentration enrichment factors are better than the DI-LPME approaches. The fully automated LPME techniques are more accurate and more convenient, and the reproducibility achieved eliminates the need for an internal standard to improve the method precision.  相似文献   

8.
顶空气相色谱-质谱联用技术的应用进展   总被引:1,自引:0,他引:1  
张茜  刘炜伦  路亚楠  吕运开 《色谱》2018,36(10):962-971
顶空分析作为一种无有机溶剂萃取的样品处理技术,通常与气相色谱-质谱(GC-MS)技术结合用来分析复杂基质中的挥发性有机物。顶空气相色谱-质谱(HS-GC-MS)技术具有快速、高效、环保、灵敏度高等特点,在常规分析中发挥着重要作用。该文简要概述了静态顶空、动态顶空、顶空固相微萃取分析以及GC-MS联用技术,并介绍了整个顶空分析系统的影响因素和优化过程。根据基质类型的分类,综述了HS-GC-MS在食品和饮料、环境、生物等样品中的应用实例。HS-GC-MS的研究非常活跃,不断出现新应用,在分析挥发性有机物方面具有广阔前景。  相似文献   

9.
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ~5?×?10?2 m2 or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ~1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ~1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.  相似文献   

10.
N2O is one of the most important greenhouse and ozone-depleting gases and has been the source of considerable concern in recent years. The oceans account for ~ 1/4 of the global N2O emission budget; however, the oceanic N2O source/sink characteristics are not well understood. To enhance the study of oceanic N2O source/sink characteristics, our laboratory developed a fully automatic underway system for surface water N2O concentration and atmospheric N2O mole fraction measurements consisting of a cavity ring-down spectroscopy (CRDS) instrument and an upstream device. The developed device can be programmed to switch the CRDS measurements from the equilibrator headspace to the atmospheric sample and the reference gas sample. The surface water N2O concentration is calculated from the equilibrium headspace N2O mole fraction in the equilibrator. The response time of this equilibrator is ~ 3.4 min, and the estimated precision of this method for surface water N2O measurements is better than 0.5% (relative standard deviation, RSD), which is one order of magnitude better than that of traditional gas chromatographic methods and can be further optimised. Data are acquired every 20 s, and the calibration frequency requirement of this system is approximately 7–10 days. This labor-saving underway system is a powerful tool for high-precision and high-resolution measurements of atmospheric and oceanic N2O and can significantly improve the study of the characteristics of oceanic N2O sources/sinks and their response to climate change.  相似文献   

11.
A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.  相似文献   

12.
This study demonstrated a full evaporation (FE) headspace gas chromatographic technique for the determination of residual monomer in methyl methacrylate (MMA) polymer latex. A very small amount (approximately 10-30 mg) of latex was added to a sealed headspace sample vial (20 ml). A near-complete monomer mass transfer from both liquid (aqueous phase) and solid phase (polymer particles) to the vapor phase (headspace) is achieved within 5 min at a temperature of 110 degrees C. The method eliminates sample pretreatment procedures such as the solvent extraction. Thus, it avoids the risk of polymer deposition on the GC system caused by a directly injection of extraction solvent in the conventional GC monomer analysis. The present method is simple, rapid, and accurate.  相似文献   

13.
Graz University of Technology has developed a new technique for digesting samples using the well-established high-pressure asher (HPA) from Anton Paar GmbH (Graz, Austria). The digestion is performed in semi-open vessels inside a pressurised autoclave. The new HPA equipment consists of a liner for the autoclave, special sample racks and 30-mL digestion vessels made of quartz, covered with PTFE stoppers. The Laboratory for Isotope Dilution and Nuclear Analysis of the Federal Institute for Materials Research and Testing (BAM, Berlin) tested this new equipment in order to assess its usability for the decomposition of larger sample amounts of gas oils for the measurement of sulfur. Several experiments were carried out using the new sample decomposition technique. In order to test the recovery of the new digestion method, a gas oil material with known sulfur content was chosen, quantified by the validated conventional closed vessel HPA digestion in combination with thermal ionisation mass spectrometry. Isotope dilution mass spectrometry has been applied as analytical method in this investigation. The gas oil was spiked with an isotopic spike material, which is enriched in 34S, and was then wet digested in the HPA. The oxidized sulfur of the dried samples was reduced to H2S and precipitated as As2S3. The sulfur was measured as arsenic monosulfide (AsS+). The mass content of sulfur in the gas oil tested is 453.5 mg kg–1. Recovery tests for increasing masses of gas oils indicate that the recovery using the new measurement technique decreases with increasing mass of gas oil. Results were obtained for approximately 0.3 g sample weight and had less overlap with the result of the old HPA method within the stated uncertainties. At approximately 0.5 g sample weight the yield decreases to about 97% and at approximately 1.0 g sample weight to about 87%. In comparison with the conventional closed vessel HPA digestion, the new technique shows no clear advantages for the certification of the sulfur content in gas oil other than a more convenient handling. The total uncertainty of the sulfur mass fractions (k=2) is about 1.5%. Repeated determination of the oil samples show a relative standard deviation of about 0.8% and indicate that the analytical procedure is robust and reproducible. The demonstrated reproducibility allows the establishment of correction factors for the yield, which in turn enables higher sample masses for routine work. The blank level (0.26×10-6 g) was within the range of the conventional closed HPA digestion procedure·(0.28×10-6 g). Cross contamination could not be detected. In terms of trace metal analysis a good applicability and more advantages over the conventional closed vessel HPA digestion can be assumed.  相似文献   

14.
We demonstrate a reaction headspace gas chromatographic method for quantifying anhydride groups in anhydride‐based epoxy hardeners. In this method, the conversion process of anhydride groups can be realized by two steps. In the first step, anhydride groups in anhydride‐based epoxy hardeners completely reacted with water to form carboxyl groups. In the second step, the carboxyl groups reacted with sodium bicarbonate solution in a closed sample vial. After the complete reaction between the carboxyl groups and sodium bicarbonate, the CO2 formed from this reaction was then measured by headspace gas chromatography. The data showed that the reaction in the closed headspace vial can be completed in 15 min at 55°C, the relative standard deviation of the reaction headspace gas chromatography method in the precision test was less than 3.94%, the relative differences between the new method and a reference method were no more than 9.38%. The present reaction method is automated, efficient and can be a reliable tool for quantifying the anhydride groups in anhydride‐based epoxy hardeners and related research.  相似文献   

15.
Ru(bpy)_3 掺杂的核壳型 Ag@SiO_2 荧光纳米粒子的制备及表征   总被引:1,自引:0,他引:1  
利用反相微乳液法制备了一种三联吡啶钌掺杂的核壳型Ag@SiO2纳米粒子。利用透射电子显微镜、荧光光谱和紫外-可见光谱等对其进行表征,并对其光稳定性和表面氨基进行了测定,结果表明该纳米粒子单分散性良好,呈规则球状、粒径为(60±5)nm,由于银的金属增强荧光效应,相对没有银核的Ru(bpy)3掺杂的SiO2纳米粒子,其荧光强度增强了2倍,光稳定性也有所提高。  相似文献   

16.
The intention of this work was to develop a simple and fast procedure for a determination of small amounts of ethanol in aqueous protein containing solutions based on combined headspace gas chromatography. In order to provide for short analysis time static headspace methodology was considered for this purpose. In this context the influence of the matrix composition onto the analytical results has been established and internal standardization as well as a full evaporation technique have been evaluated as promising alternatives for a compensation of matrix effects. With respect to speed of analysis, simplicity of sample handling as well as the quality of the analytical performance parameters, precision and accuracy, the full evaporation technique proved to be superior. Thus, the static equilibration of a 20 microliters sample aliquot in a conventional headspace sample vial for 5 min at 100 degrees C is sufficient to obtain equilibrium conditions for gas chromatographic analysis. The accuracy of this method was verified by robust regression analysis and exhibited excellent robustness within the required limits of sample composition ranging from 0 to 20% (w/w) protein content and up to 5 g/l salt content.  相似文献   

17.
In this study, headspace single-drop microextraction (HS-SDME) coupled with gas chromatography-flame ionization detection (GC-FID), was employed to determine short-chain fatty acids (SCFAs) in ruthenium tetroxide (RuO4) oxidation products of asphaltenes. Several significant parameters, such as drop solvent type, drop volume, sample solution ionic strength, agitation speed, extraction time, and ratio of headspace volume to sample volume were optimized. Under optimum extraction conditions (i.e., a 3-μL drop of 1-butanol, 20 min exposure to the headspace of a 6 mL aqueous sample placed in a 10 mL vial, stirring at 1000 rpm at room temperature, and 30% (w/v) NaCl content), the reproducibility and accuracy of the method have been tested and found to be satisfactory. The analysis of a real asphaltene sample using this method proved that HS-SDME can be a promising tool for the determination of volatile SCFAs in complex matrices.  相似文献   

18.
Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.  相似文献   

19.
The quantitative relationship between analytes established by the headspace solid‐phase microextraction procedure for multicomponent mixtures depends not only on the character and strength of interactions of individual components with solid‐phase microextraction fiber but also on their vapor pressure in the applied headspace solid‐phase microextraction system. This study proves that vapor pressure is of minor importance when the sample is dissolved/suspended in a low‐volatility liquid of the same physicochemical character as that of the used solid phase microextraction fiber coating. It is demonstrated for mixtures of alcohols, esters, ethers and their selected representatives by applying a headspace solid‐phase microextraction system composed of Carbowax fiber and sample solutions in polyethyleneglycol. The observed differences in quantitative relations between components of the examined mixtures established by their direct analysis and by modified headspace solid‐phase microextraction are insignificant (F exp < F crit). It is explained by a significant diminution in vapor pressure difference between individual components of the examined mixture in the applied headspace solid phase microextraction system due to low components concentration in polyethyleneglycol suspensions (Raoult's law) and due to strong specific interactions of analyte molecules with polyethyleneglycol molecules.  相似文献   

20.
A new technique involving laser plasma confinement and bending effects has been developed for direct powder spectrochemical analysis by means of a laser ablation method. In this technique, a special powder sample holder has been designed to overcome the blown-off problem suffered by the powder sample and allow the detection of plasma emission to be conducted on the bended shock wave plasma outside the holder, which is practically free from the continuous emission background. The spectra of various powder samples such as CuCl2, NaCl and ZnS were measured in this experiment. The result shows that this technique offers a promising practical alternative for direct spectrochemical analysis of powder sample of small quantity with extremely low background at reduced surrounding air pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号