首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the feasibility of analyzing a full range of ambient volatile organic compounds (VOCs) from C(3) to C(12) using gas chromatograph mass spectrometry (GC/MS) coupled with thermal desorption. Two columns were used: a PLOT column separated compounds lighter than C(6) and a DB-1 column separated C(6)-C(12) compounds. An innovative heart-cut technique based on the Deans switch was configured to combine the two column outflows at the ends of the columns before entering the MS. To prevent the resolved peaks from re-converging after combining, two techniques were attempted (hold-up vs. back-flush) to achieve the intended "delayed" elution of heavier components. Thus, the resulting chromatogram covering the full range of VOCs is a combination of two separate elutions, with the heavier section following the lighter section. With the hold-up method, band-broadening inevitably occurred for the delayed C(6)-C(7) DB-1 compounds while the light compounds eluted from the PLOT column. This broadening problem resulted in peak tailing that was largely alleviated by adding a re-focusing stage while the DB-1 compounds were back-flushed, and this modified technique is referred to as the back-flush method. With this modification, the separation of the C(6)-C(7) compounds improved dramatically, as revealed by the decrease in peak asymmetry (As) and increase in resolution. Linearity and precision for these peaks also improved, yielding R(2) and RSD values better than 0.9990 and 2.8%, respectively.  相似文献   

2.
A fast and simple screening procedure using solid‐phase microextraction and gas chromatography‐mass spectrometry (SPME‐GC‐MS) in full‐scan mode for the determination of volatile organic compounds (VOC) is presented. The development of a fast and simple screening technique for the simultaneous determination of various volatiles is of great importance, because of their widespread use, frequent occurrence in forensic toxicological questions and the fact that there is often no hint on involved substances at the crime scene. To simulate a screening procedure, eight VOC with different chemical characteristics were chosen (isoflurane, halothane, hexane, chloroform, benzene, isooctane, toluene and xylene). To achieve maximum sensitivity, variables that influence the SPME process, such as type of fiber, extraction and desorption temperature and time, agitation and additives were optimized by preliminary studies and by means of a central composite design. The limits of detection and recoveries ranged from 2.9 µg/l (xylene) to 37.1 µg/l (isoflurane) and 7.9% (chloroform) to 61.5% (benzene), respectively. This procedure can be used to answer various forensic and toxicological questions. The short time taken for the whole analytical procedure may make its eventual adoption for routine analysis attractive. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
朱晓平  马慧莲  朱秀华  陈吉平 《色谱》2019,37(11):1228-1234
采用热脱附-气相色谱-质谱法,建立了同时分析环境空气中67种挥发性有机物的分析方法。对比了5种不同填充材料不锈钢吸附管对78种挥发性有机物的吸附能力。填充材料为Tenax TA和Carbograph 1TD的混合填料吸附管对分析物的捕集效果最好,在30 mL/min高纯He气持续吹脱45 min的情况下,未发生穿透(即穿透率小于10%)的化合物达67种,分析物的种类包括芳香烃、脂肪烃、卤代烃和含氧挥发性有机物等。优化了使用该吸附管测定67种目标物时的热脱附条件。在5~100 ng范围内,目标化合物的色谱响应值与其量间具有良好的线性关系,其相关系数(r)均在1.0000~0.9977之间。方法检出限为0.3~2.4 ng,以采样体积1 L计算,检出限为0.3~2.4 μg/m3。加标量为20 ng时,7次重复实验目标化合物回收率均在81.6%~114.9%之间,目标化合物的相对标准偏差为1.2%~10.1%。采用该方法对某车厢内空气进行了检测,检出了包括酯类、卤代烷烃、卤代烯烃以及芳香族化合物在内的19种目标化合物,其范围为1.1~84.1 μg/m3。该方法准确、可靠、灵敏度高,实现了对环境空气中67种目标污染物的准确定量。  相似文献   

4.
马慧莲  金静  李云  陈吉平 《色谱》2017,35(10):1094-1099
建立了固相吸附热脱附-气相色谱-质谱(TD-GC-MS)综合筛查工业源废气中挥发性有机物(VOCs)的方法。对两种型号的固相吸附管进行了比较,最终选择使用Tenax SS TD Tubes吸附管。气体样品以恒定流速通过吸附管,富集分析物,经热脱附后,用GC-MS进行检测,目标化合物以内标法定量,非目标化合物的含量以甲苯的响应系数计算。方法检出限为1.06~5.44 ng,以采样体积300 mL计算,目标化合物的检出限为0.004~0.018 mg/m~3。吸附管平均加标回收率为78.4%~89.4%,相对标准偏差为3.9%~14.4%(n=7)。应用该方法对大连市某垃圾焚烧发电厂排放的废气进行VOCs目标及非目标化合物综合筛查,共检出29种VOCs,其中仅5种VOCs为预先设定的目标化合物,另外24种为非目标化合物,5种目标化合物含量仅占所有检出物总量的26.7%。证明了工业源废气VOCs分析中非目标化合物筛查的重要性,该研究思路对完整测定工业源挥发性有机污染物分布具有一定的借鉴意义。  相似文献   

5.
Headspace solid phase microextraction (headspace SPME) has been demonstrated to be an excellent solvent-free sampling method. One of the major factors contributing to the success of headspace SPME is the concentrating effect of the fiber coating toward organic compounds. The affinity of the fiber coating toward very volatile analytes, such as chloromethane, may, however, not be large enough for detection at the parts per trillion concentration level. Static headspace analysis, on the other hand, is very effective for these very volatile compounds. As analyte volatility decreases, the sensitivity of static headspace analysis drops. The complementary nature of these two sampling methods can be exploited by combining the SPME device with a gastight syringe. The sensitivity of the new sampling device is better than that of SPME for very volatile compounds or that of static headspace analysis for less volatile compounds. This new method can sample a wide range of compounds from chloromethane (b.p. −24°C) to bromoform (b.p. 149°C) with estimated limits of detection at the low parts per trillion level.  相似文献   

6.
Salvia spp. are used throughout the world both for food and pharmaceutical purposes. In this study, a method involving headspace solid-phase microextraction combined with gas chromatography–mass spectrometry was developed, to establish the volatiles profile of dried leaves of four Iranian Salvia spp.: Salvia officinalis L., Salvia leriifolia Benth, Salvia macrosiphon Boiss. and two ecotypes of Salvia reuterana Boiss. A total of 95 volatiles were identified from the dried leaves of the five selected samples. Specifically, α-thujone was the main component of S. officinalis L. and S. macrosiphon Boiss. (34.40 and 17.84%, respectively) dried leaves, S. leriifolia Benth was dominated by β-pinene (27.03%), whereas α-terpinene was the major constituent of the two ecotypes of S. reuterana Boiss. (21.67 and 13.84%, respectively). These results suggested that the proposed method can be considered as a reliable technique for isolating volatiles from aromatic plants, and for plant differentiation based on the volatile metabolomic profile.  相似文献   

7.
冯丽丽  胡晓芳  于晓娟  张文英 《色谱》2016,34(2):209-214
采用热脱附(TD)结合气相色谱-三重四极杆串联质谱(GC-MS/MS)建立了环境空气中23种挥发性有机物(VOCs)同时检测的分析方法。空气样品通过主动采样的方式富集到装有Tenax-TA填料的热脱附管中,热解吸后在选择反应监测(SRM)模式下用GC-MS/MS进行检测,内标法定量。结果表明,23种VOCs在0.01~1 ng和1~100 ng低、高两个范围内线性关系良好,相关系数(r2)均大于0.99,方法定量限为0.00008~1 μ g/m3。加标水平为2、10和50 ng时,23种VOCs的平均回收率为77%~124%。除了最低加标水平的氯苯,相对标准偏差(RSD, n=6)均小于20%。对市内3个采样点的环境空气进行测定,其中苯、甲苯、乙苯、二甲苯、苯乙烯、1,2,4-三甲基苯和六氯丁二烯均有检出。实验证明,该TD和GC-MS/MS相结合的检测方法具有准确、可靠、灵敏度高等优点,适用于环境空气中VOCs的同时测定。  相似文献   

8.
顶空气相色谱-质谱法测定玩具中的10种挥发性有机物   总被引:1,自引:0,他引:1  
吕庆  张庆  康苏媛  白桦  王超 《色谱》2010,28(8):800-804
建立了检测玩具中10种挥发性有机物(VOC)残留量的顶空气相色谱-质谱(HS-GC-MS)方法。样品经140 ℃、45 min静态顶空后,通过DB-624色谱柱分离和质谱检测,外标法定量。该方法对于不同VOC的定量限(LOQ)均在0.66 mg/kg以下,线性范围为0.001~2.0 μg,平均回收率在79%~106%之间,相对标准偏差(RSD)在0.4%~5.6%之间。该方法具有准确灵敏、简单快速等特点,将其应用于实际玩具样品的检测取得了良好效果。  相似文献   

9.
吕怡兵  孙晓慧  付强 《色谱》2010,28(5):470-475
便携式气相色谱-质谱仪(便携式GC-MS)能同时对多组分复杂有机物进行定性定量分析,在环境监测尤其是事故现场应急监测中发挥越来越重要的作用。本文比较了便携式GC-MS与EPATO-14A方法分析测定环境空气中低浓度挥发性有机物(VOCs)的性能,并探讨了利用定量环(loop环)模式测定高浓度VOCs的准确度。结果表明,采用内标标准曲线定量,HAPSITE便携式GC-MS测定空气中VOCs的检出限与EPATO-14A方法相当,准确度和精密度略低,但均符合环境监测分析的要求。利用loop环可对大部分10-6级的高浓度VOCs样品进行较为准确的测定,在突发性环境污染事故中可以得到基本准确的结果。  相似文献   

10.
A simple and sensitive method was developed for the simultaneous separation and determination of trace earthy-musty compounds including geosmin, 2-methylisoborneol, 2-isobutyl-3-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, and 2,3,6-trichloroanisole in water samples. This method combined headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry and used naphthalene-d(8) as internal standard. A divinylbenzene/carboxen/polydimethylsiloxane fiber exposing at 90°C for 30 min provided effective sample enrichment in HS-SPME. These compounds were separated by a DB-1701MS capillary column and detected in selected ion monitoring mode within 12 min. The method showed a good linearity from 1 to 100 ng L(-1) and detection limits within (0.25-0.61 ng L(-1)) for all compounds. Using naphthalene-d(8) as the internal standard, the intra-day relative standard deviation (RSD) was within (2.6-3.4%), while the inter-day RSD was (3.5-4.9%). Good recoveries were obtained for tap water (80.5-90.6%), river water (81.5-92.4%), and lake water (83.5-95.2%) spiked at 10 ng L(-1). Compared with other methods using HS-SPME for determination of odor compounds in water samples, this present method had more analytes, better precision, and recovery. This method was successfully applied for analysis of earthy-musty odors in water samples from different sources.  相似文献   

11.
In this study, a simple and solvent-free method was developed for determination of the volatile compounds from fresh flowers of Syringa oblata using headspace solid-phase microextraction and gas chromatography-mass spectrometry. The SPME parameters were studied, the optimum conditions of a 65 μm polydimethylsiloxan/divinylbenezene (PDMS/DVB), extraction temperature of 25 °C and extraction time of 30 min were obtained and applied to extraction of the volatile compounds emitted from fresh flowers of S. oblata. The volatile compounds released from fresh flowers of S. oblata were separated and identified by GC-MS. Lilac aldehyde A, lilac aldehyde B, lilac aldehyde C, lilac aldehyde D, lilac alcohol A, lilac alcohol B, lilac alcohol C, lilac alcohol D, α-pinene, sabinene, β-pinene, myrcene, d-limonene, eucalyptol, cis-ocimene, benzaldehyde, terpinolene, linalool, benzene acetaldehyde, α-terpineol, p-methoxyanisole, p-anisaldehyde, (Z,E)-α-farnesene and (E,E)-α-farnesene were the most abundant volatiles released from fresh flowers of S. oblata var. alba. The relative contents of main volatile fragrance were found to be different in emissions from two varieties of S. oblata flowers (white or purple in color). The four isomers of lilac alcohol and four isomer lilac aldehyde were the characteristic components of the scent of fresh flowers of S. oblata. The main volatile fragrance from fresh flowers of S. oblata var. alba in different florescence ((A) flower buds; (B) at the early stage of flower blooming; (C) during the flower blooming; (D) at the end of flower blooming; (E) senescence) were studied in this paper. The results demonstrated that headspace SPME-GC-MS is a simple, rapid and solvent-free method suitable for analysis of volatile compounds emitted from fresh flowers of S. oblata in different florescence.  相似文献   

12.
Solid phase microextraction (SPME) was applied in the development of a protocol for the analysis of a number of target organic compounds in landfill site samples. The selected analytes, including aromatic hydrocarbons, chlorinated hydrocarbous, and unsaturated compounds, were absorbed directly from a headspace sample above a soil layer onto a fused silica fiber. Following exposure, the fiber was thermally desorbed in the injection port of the gas chromatograph and eluted compounds were detected using a mass selective detector. The stability and sensitivity of the extraction technique were examined at five temperatures (22–60°C) using a 100μm polydimethylsiloxane fiber. Calibrations, using soil samples spiked with selected solvents (0.5–30 μg/g), were linear; trichloroethene (r2 = 0.992) and benzene (r2 = 0.998). SPME was applied to the examination of a municipal landfill where 8 sites were sampled, at three depths, resulting in the detection of xylene (maximum 2.8 μg/g) and a number of other non-target organic contaminants.  相似文献   

13.
Landfill gas, cryotrapped on a loop fashioned from a length of a capillary gas chromatography (GC) column, was examined for volatile organometallic compounds (VOMCs) and for volatile organic compounds (VOCs) by using GC–mass spectrometry (MS). A large number of organic components were present and many were identified, but the only VOMCs present in high enough concentrations to be detected were trimethylstibine and tetramethyltin. The use of inductively coupled plasma (ICP)‐MS as an element‐specific detector allowed the identification of a number of other organometallic species in the landfill gas, including trimethylarsine and trimethylbismuth, and, for the first time, butyltrimethyltin and dibutyldimethyltin. The presence of molybdenum hexacarbonyl was confirmed. Gas from a large‐scale compost heap and from compost incubated in the laboratory contained iodomethane but no common VOMCs (GC–ICP‐MS). Only VOCs were present in forest air (GC–MS). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients.  相似文献   

15.
刘永明  葛娜  王飞  李金  吴艳萍  黄学者  曹彦忠 《色谱》2012,30(8):782-791
建立了顶空气相色谱-质谱(HS-GC/MS)同时测定蜂蜜中57种挥发性有机溶剂(包括烷烃类、芳香烃类、醇类、酮类、酯类、醚类)残留量的分析方法。蜂蜜样品在密封的顶空瓶中用水溶解后,在顶空仪中于80 ℃下平衡30 min,使气-液两相达到动态平衡。采用DB-624毛细管色谱柱(60 m×0.25 mm×1.40 μm)对57种有机溶剂进行分离,GC/MS测定,外标法定量。该方法对于烷烃类、芳香烃类和醚类挥发性有机溶剂在0.005~0.2 μg、酯类0.05~2.0 μg、酮类0.5~20 μg、醇类2.5~100 μg范围内线性关系良好,相关系数均大于0.996。对于烷烃类、芳香烃类和醚类挥发性有机溶剂在1.0~20 μg/kg、酯类10~200 μg/kg、酮类100~2000 μg/kg、醇类500~10000 μg/kg添加范围内的平均添加回收率为61.0%~113.1%,相对标准偏差为1.9%~9.8%。对于烷烃类、芳香烃类和醚类挥发性有机溶剂的检出限为1.0 μg/kg、酯类10 μg/kg、酮类100 μg/kg、醇类500 μg/kg。该方法操作简单、快速,灵敏度和准确度高,适用于蜂蜜样品中多种挥发性有机溶剂残留量的同时检测。  相似文献   

16.
Helicobacter pylori living in the human stomach release volatile organic compounds (VOCs) that can be detected in expired air. The aim of the study was the application of breath analysis for bacteria detection. It was accomplished by determination of VOCs characteristic for patients with H. pylori and the analysis of gases released by bacteria in suspension. Solid-phase microextraction was applied as a selective technique for preconcentration and isolation of analytes. Gas chromatography coupled with mass spectrometry was used for the separation and identification of volatile analytes in breath samples and bacterial headspace. For data calculation and processing, discriminant and factor analyses were used. Endogenous substances such as isobutane, 2-butanone and ethyl acetate were detected in the breath of persons with H. pylori in the stomach and in the gaseous mixture released by the bacteria strain but they were not identified in the breath of healthy volunteers. The canonical analysis of discrimination functions showed a strong difference between the three examined groups. Knowledge of substances emitted by H. pylori with the application of an optimized breath analysis method might become a very useful tool for noninvasive detection of this bacterium.  相似文献   

17.
半挥发性有机物主要包括多环芳烃类(PAHs)、邻苯二甲酸酯类(PAEs)、有机氯农药类(OCPs)和硝基苯类(NBs)等化合物,这些物质多具有致癌、致畸、致突变作用,以及内分泌干扰效应.因此,快速准确测定水中半挥发性有机物非常重要,目前国内尚无水中半挥发性有机物的检测标准.该研究从氮吹温度、水样pH值和萃取时间3个方面...  相似文献   

18.
霍巨垣  欧阳钢锋  陈丽琼  王欣 《色谱》2016,34(6):615-620
建立了顶空固相微萃取结合气相色谱-质谱联用技术测定玩具中10种可迁移有机锡化合物的方法。玩具材料经0.07 mol/L HCl浸泡2 h后,使用醋酸-醋酸钠缓冲溶液将浸泡液的pH值调至4.7,然后加入四乙基硼化钠将浸泡液中的有机锡化合物乙基化,在振荡条件下用100 μ m聚二甲基硅氧烷(PDMS)纤维进行顶空固相微萃取,萃取完成后将纤维插入气相色谱进样口进行热解吸,使用DB-5毛细管柱对10种有机锡化合物进行分离。10种有机锡化合物的检出限为0.5~5 μg/kg。两个加标水平(0.500 μg/L和5.00 μg/L)下的回收率分别为80.7%~118.7%和86.2%~120.5%,RSD均低于15%。应用该方法测定了玩具可触及材料(包括涂层、织物、塑料、木料)中的可迁移有机锡化合物。该方法简便、快速、灵敏度高,不需使用有毒有机溶剂,绿色环保。  相似文献   

19.
Acori tatarinowii rhizome (ATR) is a Traditional Chinese Medicine (TCM), which has multiple effects, such as neuroprotective activity, antidepressant and other activity. However, the widespread cultivation of ATR has led to it varying quality. Therefore, it is important to find a method to quickly identify the components of ATR. Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC–MS) were applied to analyze and characterize the volatile organic compounds (VOCs) of ATR. 33 VOCs were identified by HS-GC-IMS and 95 VOCs were identified by HS-SPME-GC–MS from 15 batches of ATR. Then, quantification of estragole, methyleugenol, γ-asarone, β-asarone and asarone by gas chromatography-mass spectrometry (GC–MS). The fingerprint of HS-GC-IMS and the heatmap of HS-SPME-GC–MS were established. Which compared differential components of ATR. In addition, principal component analysis (PCA) was performed on the results of both instruments. The VOCs in the ATR were significantly correlated with β-asarone and asarone by PatternHunter analysis. It assisted HS-GC-IMS determine ATR quality. It is the first report regarding the method development of HS-GC-IMS and HS-SPME-GC–MS that targets the VOCs characterization of ATR, and the findings obtained would benefit the quality control and distinguish the complex analytical objects of ATR.  相似文献   

20.
A relatively noninvasive method consisting of a face mask sampling device, solid-phase microextraction (SPME) fibers, and a gas chromatography-mass spectrometry (GC-MS) for the identification of volatile organic compounds (VOCs) in bovine breath was developed. Breath of three morbid steers with respiratory tract infections and three healthy steers were sampled seven times in 19 days for 15 min at each sampling. The breath VOCs adsorbed on the divinylbenzene (DVB)-Carboxen-polydimethyl siloxane (PDMS) 50/30 microm SPME fibers were transported to a laboratory GC-MS system for separation and identification with an in-house spectral library of standard chemicals. A total of 21 VOCs were detected, many of them for the first time in cattle breath. Statistical analyses using Chi-square test on the frequency of detection of each VOC in each group was performed. The presence of acetaldehyde (P < or = 0.05) and decanal (P < or = 0.10) were associated more with clinically morbid steers while methyl acetate, heptane, octanal, 2,3-butadione, hexanoic acid, and phenol were associated with healthy steers at P < or = 0.10. The results suggest that noninvasive heath screening using breath analyses could become a useful diagnostic tool for animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号