首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Canister methodology is applicable to 150 polar and nonpolar VOCs found in ambient air from parts-per-billion by volume (ppbv) to parts-per-million (ppmv) levels, and has been validated at parts-per-trillion (pptv) levels for a subset of these analytes. This article is a detailed review of techniques related to the collection of volatile organic compounds (VOCs) in evacuated Summa and fused-silica-lined canisters, and their analysis by gas chromatography/mass spectrometry (GC/MS). Emphasis is placed on canister cleaning, VOC stability in canisters, sample dilution, water management, and VOC cryogenic and sorbent preconcentration methods. A wide range of VOC preconcentration and water management methods are identified from the literature, and their relative merits and disadvantages are discussed. Examples of difficulties that commonly arise when processing canister samples are illustrated, and solutions to these problems are provided.  相似文献   

2.
A novel Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) system equipped with on-line sample collection systems is described. A Hadamard-injector was successfully designed and then coupled with an on-line adsorption/desorption system for detecting volatile organic compounds (VOCs) and a supercritical fluid extraction (SFE) system, respectively, by HT-GC/MS. Six VOCs and three pesticides were used as model compounds. In the former case, an activated-charcoal trap was used to trap VOCs from the indoor air. After 10 L of indoor air had passed through the trap, the condensed components were heated and simultaneously injected into the GC column through the Hadamard-injector, based on Hadamard codes. In a second experiment, a sample of rice was spiked with three types of pesticides and the sample then extracted using a commercially available supercritical fluid extractor. After extraction, the extracted components were transferred to a holding tank and simultaneously injected into the GC column also using the Hadamard-injector. The findings show that, in both cases, the combination of on-line sample collection methods and the use of the Hadamard transform resulted in improved sensitivity and detection. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after inverse Hadamard transformation of the encoded chromatogram.  相似文献   

3.
We report the development and tests of several systems for the simultaneous determination of 18 energetic compounds and related congeners in untreated water samples. In these systems a Restricted Access Material trap or liquid-chromatography precolumn (with a C(18) or porous graphitic carbon, PGC, stationary phase) followed by a PGC analytical column are used for sample clean-up, enrichment and separation of the trace level analytes, which are then analyzed by mass spectrometry (MS). The relative merits of two MS ionization interfaces (atmospheric pressure chemical ionization, APCI, and atmospheric pressure photoionization, APPI) were also compared for the MS identification and quantification of these analytes. APCI was found to be superior in cases where both alternatives are applicable. A major drawback when applying APPI is that no signal is obtained for the cyclic nitramines and nitrate esters. Using APCI, a wide spectrum of unstable compounds can be determined in a single analysis, and the feasibility of using large volume samples (up to 100 mL) in combination with the sensitivity of the MS detection system provide method detection limits ranging from 2.5 pg/mL (for 2,4-dinitrotoluene and 2,6-diamino-6-nitrotoluene) to 563 pg/mL (for pentaerythritol tetranitrate, PETN), with repeatability ranging from 2 to 7%. Other chemometric parameters such as robustness, selectivity, repeatability, and intermediate precision were also evaluated in the validation of the extraction methods for use in water analysis. Tests with untreated groundwater and drinking water samples, spiked with 20 ng of the analytes, yielded results similar to those obtained with high purity water samples.  相似文献   

4.
A cryogenic preconcentration/high-resolution gas chromatographic technique has been developed for the rapid, simultaneous quantitation of C1–C4 organic nitrates and halocarbons in ambient air. Whole-air samples are collected in TedlarTM bags by an evacuated-chamber method. Samples were stable in 0.010-cm-thick bags for 24 h if they were immediately stored in a freezer at −25°C. Analytes in a 50-cm3 air sample were efficiently preconcentrated on fused-silica beads at −180°C and thermally desorbed at 30°C. High-resolution gas chromatography with a cross-linked polydimethylsiloxane fused-silica capillary column and an electron-capture detector were used for separation and quantitation of the analytes. An analysis time of about 12 min was facilitated by sample cryofocusing at −180°C and oven temperature programming. Recoveries of the analytes by the evacuated-chamber method were better than 95%. The sensitivity of the technique for sample volumes of 50 cm3 is in the sub-parts-per-trillion by volume (ppt[v]) range for many of the analytes, with an average precision of about ±5% for analytes at levels of about 10 ppt(v).  相似文献   

5.
An automated sampling and enrichment apparatus coupled with a gas chromatography/mass spectrometry (GC/MS) technique was constructed for the analysis of ambient volatile organic compounds (VOCs). A sorbent trap was built within the system to perform on-line enrichment and thermal desorption of VOCs onto GC/MS. In order to improve analytical precision, calibration accuracy, and to safe-guard the long-term stability of this system, a mechanism to allow on-line internal standard (I.S.) addition to the air sample stream was configured within the sampling and enrichment apparatus. A sub-ppm (v/v) level standard gas mixture containing 1,4-fluorobenzene, chloropentafluorobenzene, 1-bromo-4-fluorobenzene was prepared from their pure forms. A minute amount of this I.S. gas was volumetrically mixed into the sample stream at the time of on-line enrichment of the air sample to compensate for measurement uncertainties. To assess the performance of this VOC GC/MS system, a gas mixture containing numerous VOCs at sub-ppb (v/v) level served as the ambient air sample. Various internal standard methods based on total ion count (TIC) and selective ion monitoring (SIM) modes were attempted to assess the improvement in analytical precision and accuracy. Precision was improved from 7-8% RSD without I.S. to 2-3% with I.S. for the 14 target VOCs. Uncertainties in the calibration curves were also improved with the adoption of I.S. by reducing the relative standard deviation of the slope (Sm%) by an average a factor of 4, and intercept (Sb%) by a factor of 2 for the 14 target VOCs.  相似文献   

6.
冯丽丽  胡晓芳  于晓娟  张文英 《色谱》2016,34(2):209-214
采用热脱附(TD)结合气相色谱-三重四极杆串联质谱(GC-MS/MS)建立了环境空气中23种挥发性有机物(VOCs)同时检测的分析方法。空气样品通过主动采样的方式富集到装有Tenax-TA填料的热脱附管中,热解吸后在选择反应监测(SRM)模式下用GC-MS/MS进行检测,内标法定量。结果表明,23种VOCs在0.01~1 ng和1~100 ng低、高两个范围内线性关系良好,相关系数(r2)均大于0.99,方法定量限为0.00008~1 μ g/m3。加标水平为2、10和50 ng时,23种VOCs的平均回收率为77%~124%。除了最低加标水平的氯苯,相对标准偏差(RSD, n=6)均小于20%。对市内3个采样点的环境空气进行测定,其中苯、甲苯、乙苯、二甲苯、苯乙烯、1,2,4-三甲基苯和六氯丁二烯均有检出。实验证明,该TD和GC-MS/MS相结合的检测方法具有准确、可靠、灵敏度高等优点,适用于环境空气中VOCs的同时测定。  相似文献   

7.
《Analytical letters》2012,45(16):2912-2922
Abstract

Random metabolites present in a complex matrix can be characterized and quantified by a fast and robust liquid chromatography/mass spectra (LC/MS) method using the LTQ linear ion trap MS system. The experimental results showed excellent selectivity, precision, and sensitivity. The LTQ linear ion trap MS was found to be an excellent and highly selective instrument for measuring metabolites such as creatinine and cortisol present in complex matrices, even when such analytes were present at trace levels.  相似文献   

8.
大气环境中挥发性有机化合物的测定   总被引:8,自引:0,他引:8  
 参考美国环保局大气中挥发性有机化合物 (VOCs)的标准分析方法TO14A和TO15 ,采用预浓缩器与气相色谱联用 ,以质谱或氢火焰离子化检测器检测 ,建立了 5 6种VOCs(主要是臭氧前体物 )的快速分析方法。该方法在同一台仪器上采用单柱、单检测器 ,准确测定了高浓度CO2 下的VOCs。方法检出限为 0 1μg·m-3 ,相对标准偏差(RSD)为 2 5 7%~ 9 82 %。用该法分析了实际大气样品中的VOCs,结果令人满意。  相似文献   

9.
Capillary liquid chromatography (LC) using a 320 microns column and a flow rate of 10 microL/min has been coupled to an ion trap mass spectrometer using electrospray ionisation (ESI) to enable the rapid and effective identification of metabolites in urine, following oral administration of a novel human neutrophil elastase inhibitor, GW311616. Metabolites were identified from their mass (MS) spectra and tandem (MS/MS) mass spectra using minimal sample (1 microL of urine) and no sample pretreatment. Sensitivity assessment has shown that both molecular weight and structural information is obtainable on as little as 5 pg of compound, making the capillary LC/ion trap system as described an ideal analytical tool for the detection and characterisation of low level metabolites in biofluids (particularly when sample volume is limited). This level of detection was unattainable using a triple quadrupole mass spectrometer operating in full-scan mode, although 200 fg on column was detected using selected reaction monitoring target analysis.  相似文献   

10.
The adsorption of water vapour in carbon molecular sieves (CMS) used to determine volatile organic compounds (VOCs) in air was investigated. The CMS mass in the trap was found not to affect the mass of retained water under conditions of incomplete saturation of the adsorbent bed with water. Thus, the restrictions commonly imposed on the CMS mass are not necessary. The usefulness of four different CMSs to sample large volumes of humid air was estimated. Carboxen 1000 exhibited the best performance. To assess the magnitude of CMS mass in the trap in dependence on the volume, the relative humidity and the temperature of the sample, the use of a novel parameter, called the water vapour interference factor, was suggested.  相似文献   

11.
A new rapid, sensitive and selective liquid chromatography coupled with mass spectrometry method was developed and validated for the simultaneous quantification of pentoxifylline (PTX) and two major active metabolites in human plasma (M1 and M5). After a deproteinization step, chromatographic separation of the selected analytes was performed on a RP-C18 column. The detection of target compounds was in multiple reaction monitoring mode using an ion trap mass spectrometer equipped with an electrospray ion source. The method was validated and proved to be linear, accurate and precise over the range 5.08-406.14, 10.08-806.40 and 20.15-1611.60 ng/mL in case of PTX, M1 and M5, respectively. The major advantages of this method are the small sample volume, simple sample processing technique, the high sensitivity and the very good selectivity guaranteed by the MS/MS (in case of PTX) or MS/MS/MS (in case of M1 and M5) detection. The validated method has been successfully applied to a bioequivalence study.  相似文献   

12.
Real-time and on-line monitoring volatile organic compounds(VOCs) are valuable for real-time evalua- ting air quality and monitoring the key source of pollution. A self-developed proton transfer reaction-mass spectrometer(PTR-MS) was constructed and applied to on-line monitoring trace VOCs in ambient air in Hefei, China. With the help of a self-developed catalytic converter, the background signal of the instrument was detected and the stability of the instrument was evaluated. The relative standard deviation of signal at m/z 21 was only 0.74% and the detection limit of PTR-MS was 97 part per trillion(97×10-12, volume ratio). As a case of the air monitoring in Hefei, the ambient air at Dongpu reservoir spot was on-line monitored for 13 d with our self-developed PTR-MS. Meanwhile, a solid-phase micro-extraction(SPME) technique coupled to gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) was also used for the off-line detection of the air. The results show that our self-developed PTR-MS can be used for the on-line and long-term monitoring of VOCs in air at part per trillion level, and the change trend of VOCs concentration monitored with PTR-MS was consistent with that detected with the conventional SPME-GC-MS. This self-developed PTR-MS can fully satisfy the requirements of air quality monitoring and real-time monitoring of the key pollution sources.  相似文献   

13.
This paper describes the process of determining the presence of volatile organic compounds in air emissions from industrial wastewater treatment plants (WWTP). The analytical method, based on thermal desorption-gas chromatography-mass spectrometry, was developed to simultaneously determine of 99 volatile organic compounds (VOCs) in air samples. This method is rapid, environmentally-friendly (since no organic solvents are used to extract the analytes) and compatible with a large range of thermally stable polar and apolar compounds. The target VOCs were selected on the basis of their occurrence in real samples and their adverse effects on the environment and human health. To cover the wide range of target compounds, multisorbent tubes filled with Tenax TA and Carbograph 1TD were used. Method validation showed good repeatabilities, low detection limits, a high linear range and good recoveries. At a fixed sample volume of 600?mL no significant losses for any of the target compounds were found in the samples. Stability during storage indicated that samples must be keep refrigerated at 4°C and analysed within three days of collection. Real samples were taken from air emissions of an industrial wastewater treatment plant located in the Southern Industrial Area of Tarragona (Spain) with the aim of studying its contribution as a source of atmospheric VOCs. This WWTP collects wastewater from several chemical factories which produce isocyanates, polyurethanes, chlorinated organics and functional chemicals among other products. Samples from the collecting tank after the primary sedimentation showed higher VOC concentrations than samples from the secondary treatment tank. The most abundant VOCs found in these emissions are included in the USEPA List of Hazardous Air Pollutants. The highest values correspond to acrylonitrile (up to 1843?µg?m?3) and styrene (up to 573.70?µg?m?3). The levels of chloroform, 1,4-dioxane, ethylbenzene, 1,2,3-trimethylbenzene and 1,4-diethylbenzene were also high.  相似文献   

14.
A type of purified multi-walled carbon nanotubes (PMWCNTs) prepared by catalytic decomposition of methane, with a surface area of 98 m2/g, was evaluated as an adsorbent used for tapping volatile organic compounds (VOCs). The performance in evaluation was based on breakthrough volumes (BTVs) and recoveries of selected VOCs. PMWCNTs were also used as a trap packing material to adsorb VOCs purged from spiked water sample. Due to their porous structure, PMWCNTs were found to have much higher BTVs than that of Carbopack B, a graphitized carbon black with the same surface area as PMWCNTs. The recoveries of the tested VOCs trapped on PMWCNTs ranged from 80 to 110%, and not affected by the humidity of purge gas. The results indicate that PMWCNTs are a potential useful adsorbent for direct trapping VOCs from air samples and may be a supplement to VOCARB 3000, a commercially available trap, in purge-and-trap system to preconcentrate VOCs from water samples.  相似文献   

15.
A simple, rapid and sensitive method was developed for the simultaneous quantification of curdione, furanodiene and germacrone in rabbit plasma using a LC‐MS/MS analysis. The plasma sample preparation was a simple deproteinization by the addition of 3 vols of acetonitrile followed by centrifugation. The analytes and internal standard (IS) costunolide were separated on a Zorbax SB‐C18 column (3.5 µm, 2.1 × 100 mm) with mobile phase of methanol–water (90:10, v/v) containing 0.1% formic acid at a flow rate of 0.3 mL/min with an operating temperature of 25°C. Detection was carried out by atmospheric pressure chemical ionization in positive ion selected reaction monitoring mode. Linear detection responses were obtained for the three test compounds ranging from 5 to 5000 ng/mL and the lower limits of quantitation were 5‐10ng/mL. The intra‐ and inter‐day precisions (relative standard deviations) were within 9.4% for all analytes, while the deviation of assay accuracies was within ±10.0%. The average recoveries of analytes were >80.0%. All analytes were proved to be stable during all sample storage, preparation and analytical procedures. The method was successfully applied to the pharmacokinetic study of the three compounds after vaginal drug delivery of Baofukang suppository to rabbit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
建立了GC-MS/FID测定环境空气中57种臭氧前体物的分析方法.优化三级冷阱捕集温度、三级冷阱解析温度、初始柱温、毛细管色谱柱等实验条件.优化条件为:采用硅烷化的苏玛罐采集环境空气,目标组分经三级冷阱在-180℃低温浓缩富集,80℃解析,初始柱温为15℃,结合中心切割技术,将乙烷、乙烯、乙炔、丙烷、丙烯切割至TG-B...  相似文献   

17.
A flow injection solid-phase extraction preconcentration system using a multi-walled carbon nanotubes (MWCNTs) packed micro-column was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water by gas chromatography–mass spectrometry (GC–MS). The preconcentration of PAHs on the MWCNTs was carried out based on the adsorption retention of analytes by on-line introducing the sample into the micro-column system. Methanol was introduced to elute the retained analytes for GC–MS analysis using selected ion monitoring (SIM) mode. Important influence factors were studied in detail, such as sample acidity, sample flow rate, eluent flow rate and volume, dimensions of MWCNTs and amounts of packing material. Limits of detection of 16 PAHs for an extraction of 50 mL water sample were in the range of 0.001–0.15 μg L−1, and the precisions (RSD) were in the range of 4–14%. The optimized method was successfully applied to the determination of 16 PAHs in surface waters, with recoveries in the range of 72–93% for real spiked sample.  相似文献   

18.
研究了富勒烯烟炱对挥发性有机物(VOCs)的吸附作用.17种VOCs气体在烟炱上的比保留体积Vg20为17.4~2634L/g.富勒烯烟炱充填的吸附管对VOCs气体的吸附-热脱附回收率在40.8%~117%之间,大部分为(100±20)%.结果表明,富勒烯烟炱能够用于吸收和富集大气中痕量的VOCs  相似文献   

19.
Data are presented for real‐time atmospheric monitoring of volatile organic chemicals (VOCs) in air using selected ion flow tube mass spectrometry (SIFT‐MS) technology. These measurements were made by one of the new generation of SIFT‐MS instruments. Results are shown for five VOCs that were continually monitored from a stationary sampling point over a 4‐day period: ethene, ethanol, 1,3‐butadiene, benzene and toluene. All analytes except ethene in the study have at least two simultaneous and independent measures of concentration. These results demonstrate the great advances in SIFT‐MS that have been made in recent years. 1,3‐Butadiene is measured at a concentration of 9 pptv with a precision of 44%. For a 1‐s integration time, a detection limit of 50 pptv is achieved. Instrument sensitivities are reported for all five analytes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A direct aqueous injection-gas chromatography/mass spectrometry (DAI-GC/MS) method for trace analysis of 24 volatile organic compounds (VOCs) in water samples is presented. The method allows for the simultaneous quantification of benzene, toluene, ethyl benzene, and xylenes (BTEX), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), as well as a variety of chlorinated methanes, ethanes, propane, enthenes and benzenes. Applying a liquid film polyethylene glycol or a porous layer open tubular (PLOT) divinylbenzene GC capillary column to separate the water from the VOCs, volumes of 1-10 microL aqueous sample are directly injected into the GC. No enrichment or pretreatment steps are required and sample volumes as low as 100 microL are sufficient for accurate quantification. Method detection limits determined in natural groundwater samples were between 0.07 and 2.8 microg/L and instrument detection limits of <5 pg were achieved for 21 out of the 24 evaluated VOCs. DAI-GC/MS offers both good accuracy and precision (relative standard deviations 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号