首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
以吲哚美辛(IDM)为模板分子,丙烯酰胺(AA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,本体聚合法制备过程中加入纳米胶体金,合成了吲哚美辛胶体金分子印迹聚合物(MIPs/Au),利用MIPs/Au表面胶体金对蛋白吸附作用,将抗吲哚美辛的多克隆抗体固定在MIPs/Au上,得到表面固定有抗体的新型聚合物(MIPs/Au-Ab)并对其进行了表征。制备了填充材料为MIPs/Au-Ab的固相萃取柱并对其上样、淋洗和洗脱条件进行了优化,并将所制备的新型萃取柱用于水样中IDM的分离富集。抗吲哚美辛抗体交联在聚合物表面,不仅增加了萃取柱的特异性吸附容量,而且有效地降低了MIP的非特异性吸附。  相似文献   

2.
采用沉淀聚合法,以诺氟沙星为模板分子,合成了对氟喹诺酮类(FQs)抗生素特异性识别的分子印迹聚合物(MIPs),其印迹因子为3.17,亲和位点总数为3.27μmol/g。以该MIPs做为固相萃取柱填料,建立了分子印迹固相萃取-高效液相色谱检测蜂蜜中三种FQs抗生素残留的方法。与Oasis HLB固相萃取柱相比,该分子印迹固相萃取柱(MISPE)具有更好的净化能力和更高的富集效率。最佳条件下,三种FQs抗生素的线性范围为0.125~12.5mg/kg,相关系数均大于0.999。方法的检出限(S/N=3)为9~12μg/kg,三种FQs抗生素的加标回收率为96.5%~104.1%,相对标准偏差不高于6.2%(n=5)。该方法有望用于蜂蜜中FQs抗生素残留的常规检测。  相似文献   

3.
A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed. Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs) were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%, respectively), demonstrating the feasibility of the prepared MIP for IDM extraction. Figure Molecularly imprinted polymer-based solid-phase extraction for indomethacin  相似文献   

4.
A group selective molecularly imprinted solid phase extraction (MISPE) for malachite green (MG) from fish water and fish feed samples was developed. Using MG as template molecule, methacrylic acid as functional monomer, ethylene glycoldimethacrylate as linking agent and bulk polymerization as synthetic method, the molecularly imprinted polymers (MIPs) were synthesized and characterized with rebinding experiment. The Scatchard polt's analysis revealed that the template-polymer system showed the two-site binding behavior with dissociation constants of 0.3194 μmol L−1 and 15.70 μmol L−1, respectively. MG and two structurally related compounds, leucomalachite green (LMG) and crystal violet (CV) were employed for selectivity test. The MIPs exhibited the highest selective rebinding to MG, but also displayed 83.0% and 87.5% of cross-reactivity with LMG and CV, demonstrating that MIPs could be used as group recognition sorbents in solid phase extraction. The extraction conditions of MISPE column for MG were optimized. Tap water samples spiked with MG at concentration of 0.5-10 ng mL−1 were extracted by MISPE column and analyzed by high performance liquid chromatography. The recoveries of MISPE column for MG extraction were found to be 76.8-93.7% with the relative standard deviations of 2.12-10.09%, indicating the feasibility of the prepared MIPs for MG extraction. No detectable MG was observed in one fish farming water sample and two fish feed samples; while the MG concentrations in two pet fishpond water samples were found at 1.50 ng mL−1 and 0.67 ng mL−1, respectively.  相似文献   

5.
Peng L  Wang Y  Zeng H  Yuan Y 《The Analyst》2011,136(4):756-763
In the present work, an improved and direct approach for the preparation of molecularly imprinted polymers (MIPs) was proposed. The MIPs were prepared based on bulk polymerization by water-bath heating and ultrasonic elution of the template, using rutin as the template, acrylamide (AM) as the functional monomer and 2,2'-azobisisobutyronitrile (AIBN) as the cross linker. Molecularly imprinted polymers prepared by other elution methods, including microwave-assisted extraction and conventional Soxhlet extraction, were used for comparison and the results showed that the ultrasonic elution method is the best. The synthesized MIPs were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). High performance liquid chromatography (HPLC) was used to evaluate the adsorption properties and recognition mechanism of the MIPs. Structurally similar compounds including quercetin and genistein were utilized for verifying the molecular selectivity and characterizing the recognition capability of the MIPs. The MIPs were used as a sorbent for the solid phase extraction of rutin, and the resultant cartridge showed a good extraction performance. Thus, a molecularly imprinted solid-phase extraction (MISPE) procedure for selective pre-concentration of rutin from complicated traditional Chinese medicine (TCM) samples was proposed. Various elution parameters that affect the adsorption capacity of the polymer were evaluated to optimize the selective pre-concentration of rutin. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged from 85% to 91% for TCMs, which demonstrated that this MISPE-HPLC method could be applied to pre-concentrate and determinate rutin directly from complicated TCM samples in the presence of other interfering substances.  相似文献   

6.
An analysis method is reported for dibutyl phthalate and related compounds with high selectivity and sensitivity by using the selective molecularly imprinted solid-phase extraction (MISPE) technique. In this report, dibutyl phthalate (DBP) is employed as the template molecule, and the molecularly imprinted polymers (MIPs) are synthesized through the bulk polymerization of methacrylic acid (MAA). The Scatchard plot suggests that the template-polymer system has two-site binding behavior with the dissociation constants of 0.5187 and 0.01898 mmol L−1, respectively. The rebinding test, based on the MISPE column technique, shows the recoveries of soybean milk samples spiked with 5 phthalates are in the range of 75.8-107.5% with the relative standard deviations of 1.80-10.08%, indicating the feasibility of the prepared MIPs for phthalates extraction. Finally, the method is used to analyze the trace level of phthalates in commercial soybean milk.  相似文献   

7.
Two different molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using linuron or isoproturon (phenylurea herbicides) as templates and trifluormethacrylic acid as functional monomer. These materials were used as selective sorbents in the development of molecularly imprinted solid-phase extraction (MISPE) procedures for the determination of several phenylurea herbicides (fenuron, metoxuron, chlortoluron, isoproturon, metobromuron, and linuron) in plant samples extracts. The MISPE procedures were fully optimized and applied to the clean up of selected phenylurea herbicides in carrot, potato, corn, and pea sample extracts and finally determined by HPLC-UV at 244 nm. Although a high degree of clean up was obtained, a decrease of the MIP recognition capabilities was observed in subsequent runs. Thus, a previous clean up protocol based on the use of a non-imprinted polymer was used to prevent the loss of MIP performance and to ease the removal of interferences. Following this procedure, namely two-step MISPE, matrix compounds were almost completely removed by the non-imprinted polymer retaining the ability of MIPs to selectively rebind target analytes unaltered. The developed MISPE procedures allowed the screening of phenylurea herbicides in plant samples at concentration levels required by established European maximum residue limits.  相似文献   

8.
《Analytical letters》2012,45(18):2896-2913
Abstract

A highly selective and effective method for the purification and preconcentration of norfloxacin (NFX) in seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The molecularly imprinted polymer was synthesized by precipitation polymerization. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinker, respectively. The resulting molecularly imprinted polymer (MIP) showed high adsorption for NFX and was selective for its solid-phase extraction. An offline MISPE method followed by high performance liquid chromatography with diode array detection was established for the determination of NFX in seawater. The recoveries of spiked seawater samples using the MISPE columns were satisfactorily higher than 77.6%. The relative standard deviation was less than 5.60%, and the limit of detection was 0.027?μg L?1. Four seawater samples obtained from the Bohai Sea were analyzed, and NFX was found only at one location at a concentration of 0.280?μg L?1.  相似文献   

9.
Size-exclusion chromatography in 1,1,1,3,3,3-hexafluoro-2-propanol   总被引:1,自引:0,他引:1  
Two molecularly imprinted polymers (MIPs) have been synthesised for the selective extraction of 4-nitrophenol (4-NP) from water samples. One polymer was synthesised via a non-covalent approach and the other via a semi-covalent approach. The selectivity of the polymers for 4-NP was evaluated when these polymers were applied in on-line solid-phase extraction (MISPE) coupled to reversed-phase HPLC. The MISPE conditions for both MIPs were optimised and a clean-up step was included to eliminate non-specific interactions. Differences between the two MIPs were observed with the non-covalent MIP being the more selective of the two, whereas the recoveries were slightly higher for the semi-covalent MIP. The performance of the imprinted polymers in the MISPE of real water samples was also evaluated.  相似文献   

10.
Shi X  Song S  Sun A  Liu J  Li D  Chen J 《The Analyst》2012,137(14):3381-3389
Group-selective molecularly imprinted polymers (MIPs) for amphenicol antibiotics, including chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA), were developed for the first time using TAP as the template molecule. The characteristics of the obtained MIPs were systematically evaluated by chromatographic methods and frontal analysis, demonstrating that the MIPs had excellent chromatographic behaviors, good selectivity, and high-binding capability. A molecularly imprinted solid-phase extraction (MISPE) procedure was developed based on the chromatography results. The MIPs exhibited better group selectivity for CAP, TAP, FF, and FFA than non-imprinted polymers (NIPs) under the optimized washing conditions of 10% acetonitrile in PBS buffer (25 mmol L(-1), pH = 5). Compared with conventional solid-phase extraction, significant recoveries ranging from 92.4% to 98.8% with lower relative standard deviation values in the range of 3.2-7.3% for both intraday- and interday-assays were obtained. The limits of detection (LODs) of MISPE for CAP, TAP, FF, and FFA in shrimp were found to be 0.016, 0.093, 0.102, and 0.029 μg kg(-1), respectively. The results acquired in this study contribute to the strategic development of MIPs and MISPE methods for the multi-residual recognition of antibiotics from complex matrices.  相似文献   

11.
A rapid, specific, and sensitive method has been developed using molecularly imprinted polymers (MIPs) as solid-phase extraction sorbents for extraction of trace tetracycline antibiotics (TCs) in foodstuffs. MIPs were prepared by precipitation polymerization using tetracycline as the template. Under the optimal condition, the imprinting factors for MIPs were 4.1 (oxytetracycline), 7.0 (tetracycline), 7.4 (chlortetracycline), 7.7 (doxycycline), respectively. Furthermore, the performance of MIPs as solid-phase extraction sorbents was evaluated and high extraction efficiency of molecularly imprinted solid-phase extraction (MISPE) procedure was demonstrated. Compared with commercial sorbents, MISPE gave a better cleanup efficiency than C18 cartridge and a higher recovery than Oasis HLB cartridge. Finally, the method of liquid chromatography–tandem mass spectrometry coupled with molecular-imprinted solid-phase extraction was validated in real samples including lobster, duck, honey, and egg. The spiked recoveries of TCs ranged from 94.51% to 103.0%. The limits of detection were in the range of 0.1–0.3 μg kg−1. Chromatograms obtained by direct injection of the spiked egg extracts (5 × 10-3 mmol L−1) and purification with MISPE  相似文献   

12.
Cocaine is a well-known drug of abuse which, when ingested nasally or by smoking, undergoes a number of biotransformation and degradation reactions. In the present work, a synthetic analogue of the cocaine metabolite benzoylecgonine was prepared and used as a template molecule in the preparation of a series of molecularly imprinted polymers (MIPs). Molecularly imprinted solid-phase extraction (MISPE) conditions were established under which benzoylecgonine in aqueous samples could be selectively extracted and quantified at clinically relevant concentrations (μg/ml). Under optimised MISPE conditions, recoveries of analyte were high (>70%) and excellent discrimination between imprinted and non-imprinted materials observed.  相似文献   

13.
采用沉淀聚合法以橙皮素为模板分子,2-乙烯基吡啶为功能单体,二甲基丙烯酸乙二醇酯为交联剂,合成了橙皮素分子印迹聚合物。利用紫外光谱法确定了最佳功能单体与配比,优化了合成条件。采用傅立叶变换红外光谱、扫描电子显微镜、静态吸附对聚合物进行表征。实验结果表明,分子印迹聚合物的吸附性能明显优于空白印迹聚合物,且此聚合物对柚皮苷、橙皮苷、柚皮素和橙皮素的相对选择系数分别为1.40,1.39,1.59和2.89,表明该分子印迹聚合物对4种黄烷酮有较好的选择性。将印迹聚合物作为固相萃取填料,对枳实提取液进行分离和富集,结果表明上述4种黄烷酮的提取率分别为72.6%,61.1%,95.4%和93.5%,分离富集效果良好,大大提高了枳实中4种黄烷酮的提取效率。  相似文献   

14.
宋彬  李进义  荆涛  牛计伟  周雨笋  梅素容 《色谱》2014,32(10):1111-1116
采用沉淀聚合法,以红霉素(erythromycin,ERY)为模板,甲基丙烯酸(methacrylic acid,MAA)为功能单体,乙二醇二甲基丙烯酸酯(ethyleneglycoldimethacrylate,EGDMA)为交联剂,甲醇/乙腈(1:4,v/v)为致孔剂制备了ERY分子印迹聚合物(molecularly imprinted polymers,MIPs)。通过扫描电镜、平衡吸附实验等对制备的印迹和非印迹聚合物进行表征和测定,结果表明所制备的MIPs对ERY具有特异性吸附作用。Scatchard分析证明MIPs对ERY的吸附存在两类不同结合位点,最大表观结合量(Qmax)和平衡解离常数(Kd)分别为Qmax1=45.24 mg/g,Kd1=0.028 g/L; Qmax2=87.53 mg/g,Kd2=0.20 g/L。以制备的MIPs为吸附剂的分子印迹固相萃取柱,结合高效液相色谱法能够快速检测猪肉样品中的ERY残留,线性范围为0.5~50 mg/L(r2=0.9994),检出限(S/N=3)为0.2 mg/kg。猪肉样品中不同添加水平下ERY的加标回收率为95.2%~104.2%,相对标准偏差(RSD)小于5%。该方法选择性好,灵敏、可靠,可用于猪肉等复杂食品样本中ERY残留的检测。  相似文献   

15.
Huang Y  Zhang Q  Liu M  Wang X  Li J  He L 《色谱》2012,30(1):56-61
以莱克多巴胺为模板分子,丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯为交联剂,合成了对莱克多巴胺具有高选择性的分子印迹聚合物。考察了甲醇、乙腈、丙酮和氯仿-甲醇与三乙胺构成致孔剂合成的聚合物性能及其形貌特征。通过正交试验优化的聚合反应配方为: 1.0 mmol莱克多巴胺,4.0 mmol丙烯酰胺,20.0 mmol乙二醇二甲基丙烯酸酯,6.0 mL乙腈-三乙胺(30:1, v/v), 50.0 mg偶氮二异丁腈。建立的基于分子印迹固相萃取-高效液相色谱测定饲料试样中莱克多巴胺的方法,在0.50~100 mg/L质量浓度范围内有良好的线性关系(r=0.9994);饲料试样中1.0、10及100 mg/kg 3个添加水平的莱克多巴胺平均回收率大于80%;批内、批间测定的相对标准偏差小于10%;检出限(信噪比为3)达到0.1 mg/kg。该方法灵敏、可靠,用于饲料等复杂基质中莱克多巴胺检测的效果优于相关标准分析方法。  相似文献   

16.
Xiangli Sun  Langxing Chen 《Talanta》2009,79(3):926-934
A novel solid phase extraction (SPE) method for determination of tetracyclines (TCs) in milk and honey samples by molecularly imprinted monolithic column was developed. Using tetracycline (TC) as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methanol as the solvent, cyclohexanol and dodecanol as the mixed porogenic solvents, a TC imprinted monolithic column was prepared by in situ molecular imprinting technique for the first time, and the optimal synthesis conditions and the selectivity of TC imprinted monolithic column were investigated. The interfering substances in food samples and TCs can be separated successfully on imprinted column. Molecularly imprinted solid phase extraction (MISPE) coupling with C18 column was used to determinate the TCs in milk and honey. The recoveries of this method for six tetracyclines antibiotics such as tetracycline (TC), oxytetracycline (OTC), minocycline (MINO), chlortetracycline (CTC), metacycline (MTC) and doxycycline (DTC) were investigated, and high recoveries of 73.3-90.6% from milk samples and 62.6-82.3% from honey samples were obtained. A method for determination of TCs at low concentration level in milk and honey samples was successfully developed by using the monolithic column as the precolumn for solid phase extraction of six TCs compounds.  相似文献   

17.
One of the most promising separation techniques that have emerged during the last decade is based on the use of molecularly imprinted polymers (MIPs). MIPs are stable polymers that possess specific cavities designed for a template molecule, endowed with excellent selectivity compared to regular solid phase extraction techniques. Molecularly imprinted solid-phase extraction (MISPE) has already shown a high efficiency for the sample preparation from complex matrices. Natural products received huge attention in recent years. Indeed, the application of MISPE for the screening of natural products appears extremely interesting not only for the selective extraction of a target compound but also for the concomitant discovery of new drug candidates, promising sources of therapeutic benefits. In the present review, examples of recognition and separation of active components from natural extracts are emphasized. MIPs are very promising materials to mimic the recognition characteristics exhibited by enzymes or receptors although further developments are necessary to fully exploit their wide potential.  相似文献   

18.
The use of molecularly imprinted polymers (MIPs) prepared by ring-opening metathesis polymerization (ROMP) for bisphenol A (BPA) was reported in this article. The resulting MIPs have high imprinting and adsorption capacities, and can be used for separation and determination of BPA in environmental water samples. The successful application of ROMP in the molecular imprinting field is described here. For the first time, two cross-linkers (dicyclopentadiene and 2,5-norbornadiene) and two Grubbs catalysts (first and second generation) were investigated to compare their effects on the binding performance of MIPs. The ROMP technique is able to create the imprinted polymers within 1 h under mild conditions. Furthermore, it can provide MIPs with obvious imprinting effects towards the template, very fast template rebinding kinetics, high binding capacity and appreciable selectivity over structurally related compounds. The adsorption process for MIPs in this study can be completed within 45 min, which is much faster than that of bulk MIPs synthesized by traditional free-radical polymerization. The resulting imprinting polymer was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from diluted aqueous samples. The optimized extraction protocol resulted in a reliable MISPE method suitable for selective extraction and preconcentration of BPA from tap water, human urine and liquid milk samples. This article demonstrates the practical feasibility of the MIPs prepared via ROMP as solid-phase extraction materials.  相似文献   

19.
Molecularly imprinted polymers (MIPs) for benzimidazole compounds have been synthesized by precipitation polymerization using thiabendazole (TBZ) as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate (EDMA) and divinylbenzene (DVB) as cross-linkers and a mixture of acetonitrile and toluene as porogen. The experiments carried out by molecularly imprinted solid phase extraction (MISPE) in cartridges demonstrated the imprint effect in both imprinted polymers. MIP–DVB enabled a much higher breakthrough volume than MIP–EDMA, and thus was selected for further experiments. The ability of this MIP for the selective recognition of other benzimidazole compounds (albendazole, benomyl, carbendazim, fenbendazole, flubendazole and fuberidazole) was evaluated. The obtained results revealed the high selectivity of the imprinted polymer towards all the selected benzimidazole compounds.An off-line analytical methodology based on a MISPE procedure has been developed for the determination of benzimidazole compounds in tap, river and well water samples at concentration levels below the legislated maximum concentration levels (MCLs) with quantitative recoveries. Additionally, an on-line preconcentration procedure based on the use of a molecularly imprinted polymer as selective stationary phase in HPLC is proposed as a fast screening method for the evaluation of the presence of benzimidazole compounds in water samples.  相似文献   

20.
Guo Z  Zhang L  Song C  Zhang X 《The Analyst》2011,136(14):3016-3022
In the study, molecularly imprinted polymers (MIPs) with special molecular recognition properties of matrine (MAT) were prepared in our lab, using melamine-urea-formaldehyde (MUF) as the functional monomer and matrine as the template. An equilibrium binding experiment was performed to investigate the binding ability of the MIPs, and indicated that the MIPs had a high adsorption and good elution ability to the target molecule MAT, when the template/functional monomer ratio (T/M) was 5 mg g(-1). Scatchard analysis and isothermal equilibrium adsorption indicated that only one kind of binding site had existed in the MAT-imprinted polymers with its dissociation constants estimated to be 3.31 × 10(-4) mol L(-1) (200-400 mesh (inch(-1))) and 6.83 × 10(-4) mol L(-1) (over 400 mesh (inch(-1))) depending on the mesh of the MIPs. MAT purification and elution experiments were carried out using MIPs as the solid-phase extraction (MISPE) sorbent, and acetone, water, and chloroform as the elution solvents. The results demonstrated that MIPs achieved their highest adsorption capability after treatment with alkaline solution, while acetone was the most efficient elution solvent. Then, a crude extraction of matrine in radix Sophorae tonkinensis was performed using these MIPs as the separation medium. The results showed that MIPs had a high MAT selectivity, and the amount of matrine content obtained by MISPE was 1.4-fold to that obtained by liquid-liquid extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号