首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li  Yonggang  Chen  Ziliang  Zhang  Rui  Luo  Ping  Zhou  Yan  Wen  Sheng  Ma  Meihu 《Chromatographia》2016,79(17):1165-1175

A quick, easy, cheap, rugged, effective, and safe (QuEChERS)-based method has been validated for the extraction of 42 pesticides and herbicides including organophosphorus pesticides (OPPs), carbamate pesticides (CBs), herbicides (HBs), organochlorine pesticides (OCPs), and synthetic pyrethroid pesticides (PYRs) from chicken eggs. The QuEChERS-based extraction procedure was followed by cleanup steps using C18 and primary secondary amine sorbents. The supernatant was analyzed by ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) and gas chromatography–mass spectrometry (GC–MS). The OPPs, CBs, and HBs were quantified by UHPLC–MS/MS, while the OCPs and PYRs were detected by GC–MS. The limits of quantification ranged from 0.01 to 8.5 μg kg−1, and the analyte recoveries were in the range of 64.9–123.2 %. Furthermore, the repeatabilities (intra-day and inter-day) were good, and linear matrix-matched calibration curves were obtained. Acetochlor was identified in concentrations ranging from 0.27 to 0.44 μg kg−1 in four samples from 80 chicken eggs. The method was successfully demonstrated for the fast and reliable analysis of pesticides and herbicides in chicken egg samples.

  相似文献   

2.
QuEChERS and solid phase extraction (SPE) methods were applied for determining four herbicides (metazachlor, oxyfluorfen, quizalofop-p-ethyl, quinmerac) and one insecticide (α(±)-cypermethrin) in runoff water, soil, sunflower and oilseed rape plant matrices. Determination was performed using gas chromatography mass spectrometry (GC-MS), whereas high-pressure liquid chromatography mass spectrometry (HPLC-MS) was used for quinmerac. In all substrates linearity was evaluated using matrix-matched calibration samples at five concentration levels (50–1000 ng L?1 for water, 5–500 μg kg?1 for soil and 2.5–500 μg kg?1 for sunflower or oilseed rape plant). Correlation coefficient was higher than 0.992 for all pesticides in all substrates. Acceptable mean recovery values were obtained for all pesticides in water (65.4–108.8%), soil (70.0–110.0%) and plant (66.1–118.6%), with intra- and inter-day RSD% below 20%. LODs were in the range of 0.250–26.6 ng L?1 for water, 0.10–1.8 μg kg?1 for soil and 0.15–2.0 μg kg?1 for plants. The methods can be efficiently applied for field dissipation studies of the pesticides in energy crop cultivations.  相似文献   

3.
A method has been developed for analysis of 14 organochlorine pesticide residues in cereals. After accelerated solvent extraction and solid-phase extraction clean-up on graphitized carbon black/primary–secondary amine (GCB/PSA), to reduce co-extraction of interferences, pesticide residues were analyzed by gas chromatography with electron-capture detection. When the method was validated, recoveries were in the range 78–116%, relative standard deviations were in the range 1.1–16.3%, and limits of detection and quantification were from 1.5 to 4.2 μg kg?1 and from 4.6 to 12.5 μg kg?1, respectively.  相似文献   

4.
A facile and sensitive method utilizing capillary gas chromatography with nitrogen phosphorus detection (GC–NPD) has been developed and validated for simultaneous analysis of hexaconazole, myclobutanil, and tebuconazole, three broad-spectrum systemic fungicides, in apples and soil. Two samples were fortified with the three pesticides and subjected to ultrasonic extraction, followed by solid-phase extraction (SPE) to remove coextractives, before analysis by GC–NPD. SPE procedures were performed on PSA cartridges (500 mg, 3 mL), the analytes being eluted with n-hexane–acetone (9:1 v/v, 2 mL). Recovery of three pesticides from the fortified apple and soil samples ranged from 94.5 to 107.3% with relative standard deviations less than 9.7% at the three spike levels (0.01, 0.1, and 0.5 mg kg?1). Limits of quantification of the method for apple and soil were 0.01 mg kg?1, sufficiently below the maximum residue limits. Direct confirmation of the analytes in samples was achieved by gas chromatography–mass spectrometry (GC–MS).  相似文献   

5.
In this study, an effective gas chromatography–tandem mass spectrometry method was developed to determine 47 pesticide residues in tea. Sample preparation involved a quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure, wherein the sample is extracted by acetonitrile and cleaned up with multiwalled carbon nanotubes and primary secondary amine adsorbents; dispersive liquid–liquid microextraction (DLLME) was subsequently performed using carbon tetrachloride as extractive solvent and the extract obtained by QuEChERS as dispersive solvent. Factors influencing DLLME efficiency, including type and volume of extractive solvent, volume of dispersive solvent, and extraction time were evaluated. For validation purposes, recovery studies were performed using matrix blanks fortified with pesticides at three concentrations, namely, 10, 50, and 100 μg kg?1. Most of the analytes were recovered at an acceptable range of 70?120% and RSDs ≤ 20% were acquired for green tea, oolong tea, black tea, and puer tea. Limits of quantification of pesticides obtained for these teas were sufficiently low, and most pesticides levels were lower than 10 μg kg?1, which satisfies the requirements for maximum residue levels (MRLs) as prescribed by the European Community. Twenty-four commercially available tea samples were analyzed using this optimized method. Results revealed that the contents of chlorpyrifos and alpha-HCH from different green tea samples exceed the MRLs, and chlorpyrifos, bifenthrin, lambda-cyhalothrin, and cypermethrin are among the most frequently detected pesticides in teas.  相似文献   

6.
An extraction method based on matrix solid-phase dispersion was developed to determine carbofuran, pyrimethanil and tetraconazole in banana using gas chromatography–mass spectrometry. The best results were obtained using 2.0 g of banana, 1.0 g of silica as dispersant sorbent and n-hexane:ethyl acetate (1:4, v/v) as eluting solvent. The method was validated using banana samples fortified with pesticides at different concentration levels (0.05–2.0 mg kg?1). Average recoveries (four replicates) ranged from 68 to 111%, with relative standard deviations between 6.6 and 20.5%. Detection and quantification limits for banana ranged from 0.02 to 0.05 and 0.05 to 0.10 mg kg?1, respectively.  相似文献   

7.
A novel method, dispersive liquid–liquid microextraction coupled with liquid chromatography-variable wavelength detector (LC-VWD), has been developed for the determination of chloramphenicol (CAP) in honey. A mixture of extraction solvent (30 μL 1,1,2,2-tetrachloroethane) and dispersive solvent (1.00 mL acetonitrile) were rapidly injected by syringe into a 5.0 mL real sample for the formation of cloudy solution, the analyte in the sample was extracted into the fine droplets of C2H2Cl4. After extraction, phase separation was performed by centrifugation and the enriched analyte in the sedimented phase was determined by LC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2,000 μg kg?1 for target analyte. The enrichment factor for CAP was 68.2, and the limit of detection (S/N = 3) were 0.6 μg kg?1. The relative standard deviation (RSD) for the extraction of 10 μg kg?1 of CAP was 4.3% (= 6). The main advantages of method are high speed, high enrichment factor, high recovery, good repeatability and extraction solvent volume at μL level. Honey samples were successfully analyzed using the proposed method.  相似文献   

8.
A simple and rapid method based on pressurized liquid extraction has been validated for the simultaneous extraction of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from agricultural soil samples. Effective extraction was carried out in less than 17 min for all the studied compounds, and good recoveries were obtained for PAHs and PCBs, ranging from 70% to 112%, when blank samples were spiked at 2.5 μg kg−1, except for naphthalene with recoveries close to 40%. The separation and determination were performed by gas chromatography coupled to tandem mass spectrometry using a triple quadrupole mass analyzer. The target compounds were detected by electron impact with selected reaction monitoring, and mass spectrometric conditions were optimized in order to increase selectivity and sensitivity. The developed method was validated, and matrix-matched calibration was used for quantification purposes. Repeatability and interday precision ranged from 0.9% to 16.8% and from 1.6% to 22.3%, respectively. Limits of quantification ranged from 0.07 to 2.50 μg kg−1. The proposed method was applied to the analysis of agricultural soil samples collected from Almeria (Spain), and PAHs and PCBs were detected in some samples at concentrations ranging from 0.1 to 210 μg kg−1.  相似文献   

9.

A rapid and simple analytical method for the determination of ten chlorinated priority substances (hexachloro-1,3-butadiene, pentachlorobenzene, hexachlorobenzene, hexachlorocyclohexane isomers, heptachlor, and heptachlor epoxides) in fish samples using QuEChERS extraction, dual dispersive solid-phase extraction (dSPE) clean-up, and GC analysis was developed. For the extraction, two published extraction/partitioning procedures were evaluated, and the recoveries obtained for the analytes (in range 54–98 % with RSDs ≤15 %) were in favour of the conventional QuEChERS method. The use of the dual dSPE clean-up yields cleaner extracts than in the case of single dSPE, which enables the use of ECD for the detection of the analytes and simplifies the maintenance of the GC system. The method was optimised using homogenates of chub fish that is frequently sampled for monitoring purposes. The linearity of the method was evaluated using matrix-matched calibration curves (in the range 2–50 μg kg−1), and correlation coefficients (r 2) in the range 0.9927–0.9992 and RSDs of the relative response factors (RRF) below the value of 20 % were achieved. LODs ranged from 0.5 to 1.1 μg kg−1, while LOQs ranged from 1.5 to 3.5 μg kg−1. The accuracy of the method was verified by the analysis of the NIST standard reference material SRM 1946 (Lake Superior Fish Tissue), and most of the analytes of interest presented good agreement with the certified values.

  相似文献   

10.
This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL?1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg?1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of?≤?20%, respectively, when spiked at a level of 10 μg kg?1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg?1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg?1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg?1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.  相似文献   

11.
Since 1995, in Austria, an agricultural programme (ÖPUL) has promoted an environmentally friendly and extensive production with restricted pesticide use. To observe the achievement of this goal, the pesticides in leaf samples are monitored. This study aimed to develop a multiresidue method for the qualitative and quantitative analysis of 46 pesticides in leaf samples with HPLC-IT-MS equipped with an electrospray ionization in positive mode after extraction with the QuECheRS method. The method has been validated for leaf samples based on the SANCO European Guideline at two fortification levels (LOQ and 10 times LOQ). The recoveries of the pesticides, with a few exceptions, were between 70 and 110% at both fortification levels and modes (full scan and selected reaction monitoring, SRM) with acceptable precision (RSD??1 and between 4.8 and 725?µg?kg?1 in full scan, respectively) compared with the Austrian authorized value of 100?µg?kg?1 fresh leaf sample defined in the ÖPUL programme.  相似文献   

12.
Α simple, relatively rapid, sensitive and cost-effective method based on ultrasound-assisted emulsification microextraction (USAEME) followed by gas chromatography coupled with mass spectrometry has been developed for the determination of seven endocrine disruptor pesticides (chlorpyrifos, deltamethrin, dimethoate, fenitrothion, malathion, pendimethalin and procymidone) in apple juice. This approach is based on the emulsification of organic extraction solvent in a diluted apple juice sample by ultrasound radiation and further separation of both liquids phases by centrifugation. The influence of the different parameters affecting the procedure (extraction solvent, extraction solvent volume, ultrasound time, centrifugation time, ionic strength and pH) was evaluated in order to optimise the efficiency of the extraction process. Target analytes were extracted from a 0.5 g apple juice sample that was diluted by 10 times with aqueous buffer solution (pH 7). The optimised USAEME procedure used 100 μL of chloroform as extraction solvent, 8 min of ultrasound extraction, ionic strength (2.5% w/v) and 7.5 min of centrifugation at 3800 rpm. The optimised method presented recoveries between 70 and 113% for the target analytes. Acceptable linearity for all target analytes was recorded with correlation coefficients (r) higher than 0.992. The limits of quantification were found between 1.1 and 4.6 μg kg?1 ensuring compliance with the maximum residue limits established by the European Commission. The proposed method was applied for the determination of the endocrine disruptor pesticides in apple samples proving its suitability to the Commission Implementing Regulation (EU) no. 400/2014.  相似文献   

13.
Alkyl esters of p-hydroxybenzoic acid (parabens) are a family of compounds that have been in use since the 1920s as preservatives in cosmetic formulations, with one of the lowest rates of skin problems reported in dermatological patients. However, in the last few years, many scientific publications have demonstrated that parabens are weak endocrine disruptors, meaning that they can interfere with the function of endogenous hormones, increasing the risk of breast cancer. In the present work, a new sample treatment method is introduced based on dispersive liquid–liquid microextraction for the extraction of the most commonly used parabens (methyl-, ethyl-, propyl-, and butylparaben) from human serum samples followed by separation and quantification using ultrahigh performance liquid chromatography–tandem mass spectrometry. The method involves an enzymatic treatment to quantify the total content of parabens. The extraction parameters (solvent and disperser solvent, extractant and dispersant volume, pH of the sample, salt addition, and extraction time) were accurately optimized using multivariate optimization strategies. Ethylparaben ring 13C6-labeled was used as surrogate. Limits of quantification ranging from 0.2 to 0.7 ng mL?1 and an interday variability (evaluated as relative standard deviations) from 3.8 to 11.9 % were obtained. The method was validated using matrix-matched calibration standard and a spike recovery assay. Recovery rates for spiked samples ranged from 96 to 106 %, and a good linearity up to concentrations of 100 ng mL?1 was obtained. The method was satisfactorily applied for the determination of target compounds in human serum samples.  相似文献   

14.

A fast gas chromatographic–mass spectrometric (GC–MS) method is proposed for pesticide multiresidue analysis of apples. The QuEChERS method was used for sample preparation. GC–MS analysis was performed with a PTV, an autoinjector, and a quadrupole benchtop MS detector. Electron-impact ionization (70 eV) was used with two modes of selected ion monitoring. Compounds were separated under temperature-programmed conditions on a narrow-bore diphenyldimethylsiloxane column. In one chromatographic run 61 pesticides of different chemical classes, and triphenyl phosphate as internal standard, were determined in 11 min. Calibration was performed with matrix-matched standard solutions and response to the pesticides was a linear function of concentration in the range 1–500 ng mL−1 (equivalent to 1–500 μg kg−1 in real samples). High values of the determination coefficients (R 2; 0.9900–1.0000) were obtained for most of the pesticides. Limits of detection and quantification were determined. When the method was used for analysis of pesticide residues in real samples, five pesticides were detected at concentrations in the range 1.00–21.47 μg kg−1. Repeatability of measurements, expressed as relative standard deviations of absolute peak areas, normalized relative to TPP, and of the concentrations determined, met the EU criterion of RSD ≤ 20%. Use of the internal standard moderately improved quantitative results.

  相似文献   

15.
ABSTRACT

A comprehensive multiresidue method for the analysis of 33 antibiotics from 7 prevalent classes was comparably investigated for both dairy and poultry manure samples, which can be important pollution sources for the release of antibiotics into the environment. Following salting-out-assisted extraction with acetonitrile, the antibiotics were quantified with ultrahigh-performance liquid chromatography tandem mass spectrometry without a clean-up step. By changing the composition of the mobile phase for chromatography, a pronounced signal enhancement was achieved not only for tetracyclines (TCs) but also for other groups of antibiotics in the manure samples. Although the physicochemical properties of selected antibiotics were quite different, the apparent recovery values from dairy and poultry manure samples by using an extraction solvent comprising McIlvaine buffer and ethylenediaminetetraacetic solution at pH 3 were 86–121% and 89–113%, respectively. Apparent recovery of the antibiotics was not remarkably affected by the extraction solvent over a wide range of pH values, with the exception of the recovery of TC antibiotics from poultry manure, which was in the 53–55% range at pH 8. Furthermore, the poor performance of the analytical method for a few of the antibiotics in poultry manure was correlated with high metal and organic contents of the complicated matrix. The high suppression effects of co-eluted matrix components were compensated by constructing matrix-matched calibration curves and by using internal standards. Simultaneous quantification of seven different antibiotic classes with low limit of detection values varying from 0.38 to 31 μg kg?1 for dairy manure and from 0.32 to 5.85 μg kg?1 for poultry manure facilitated their monitoring. The application of the developed analytical method to dairy, broiler and layer-hen manure samples from confined animal feeding operations showed that a wide variety of antibiotics at high concentrations were found in broiler manure.  相似文献   

16.
A method was established for the simultaneous determination of 116 pesticide residues in Notoginseng Radix et Rhizome with a combination of the modified QuEChERS method and GC–MS/MS. The sample was extracted with acetonitrile, cleaned up by primary–secondary amine and octadecyl-modified silica (C18) sorbents and determined by GC–MS/MS in multireaction monitoring mode. Matrix-matched calibration coupled with internal standard method was applied to compensate for the matrix effect and to quantify the pesticides. The results of all the 116 pesticides showed good linearity in the respective linear range with correlation coefficients (r2) > 0.99. The method limits of quantification were between 0.01 and 0.05 mg kg?1. The recoveries were between 64.3 and 119.4%, with RSD values typically lower than 18.3% at three spiked levels of 0.05, 0.10 and 0.20 mg kg?1. The validated methodology is easy, fast, highly accurate, reliable and sensitive for monitoring and quantification of the 116 pesticide residues in Notoginseng Radix et Rhizoma. In 180 batches of real samples, 11 pesticides were detected and among these quintozene and cyfluthrin were in excess of the standard of European Union maximum residue level for herbs.  相似文献   

17.

A new technique, namely dynamic headspace liquid-phase microextraction, has been developed for the extraction of 1,4-dioxane in cosmetic and hygiene samples followed by gas chromatography–flame ionization detection. In this method, the sample is mixed with acetone as a diluent solvent. Then, a few microliters of n-octanol are added into a home-made extraction vessel placed in the headspace of the sample. By heating, the target analyte is transferred to the headspace of the sample and then extracted into n-octanol. Under the optimized conditions, the method showed a good linearity in the range of 3.24–1000 μg kg−1 with a coefficient of determination 0.998. Figures of merit such as enrichment factor of 375, extraction recovery of 94 %, limits of detection and quantification 0.97 and 3.24 μg kg−1, respectively, and relative standard deviation 4.7 % (n = 6, C = 30 μg kg−1) of the proposed method were satisfactory for determination of the target analyte. Finally, the method was successfully applied in determination of 1,4-dioxane in various cosmetic and hygiene samples including shampoo, toothpaste, lotion, washing liquid, and dishwashing liquid.

  相似文献   

18.
An in-line matrix cleanup method was used for the simultaneous extraction of 15 sulfonamides and two metabolites from manure samples. The ultrasound/microwave-assisted extraction (UMAE) combined with solid–liquid–solid dispersive extraction (SLSDE) procedure provides a simple sample preparation approach for the processing of manure samples, in which the extraction and cleanup are integrated into one step. Ultrasonic irradiation power, extraction temperature, extraction time, and extraction solvent, which could influence the UMAE efficiency, were investigated. C18 was used as the adsorbent to reduce the effects of interfering components during the extraction procedure. The extracts were concentrated, and the analytes were analyzed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) without any further cleanup. The isotopically labeled compounds sulfamethoxazole-d 4, sulfamethazine-d 4, sulfamonomethoxine-d 4, and sulfadimethoxine-d 6 were selected as internal standards to minimize the matrix effect in this method. The recoveries of the antibiotics tested ranged from 71 to 118 % at the three spiking levels examined (20, 200, and 500 μg?·?kg-1). The limits of detections were 1.2–3.6 μg?·?kg-1 and the limits of quantification were 4.0–12.3 μg?·?kg-1 for the sulfonamides and their metabolites. The applicability of the method was demonstrated by analyzing 30 commercial manure samples. The results indicated that UMAE–SLSDE combined with LC–MS/MS is a simple, rapid, and environmentally friendly method for the analysis of sulfonamides and their metabolites in manure, and it could provide the basis for a risk assessment of the antibiotics in agricultural environments.  相似文献   

19.
Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC–MS–MS) has been used for screening and quantification of 32 pesticides and metabolites in two fruit matrices. The compounds investigated belonged to different chemical families of insecticides, acaricides, fungicides, and herbicides; several metabolites were also included. Quantification was conducted using matrix-matched standards calibration; response was a linear function of concentration in the range tested (10–500 ng mL−1). The method was validated with blank samples of lemon and raisin spiked at 0.01 and 0.1 mg kg−1, and recoveries were satisfactory, between 70 and 110%, for most of the pesticides tested and relative standard deviations were below 15% (n = 5 at each spiking level). Excellent sensitivity resulted in limits of detection for all compounds well below 0.01 mg kg−1, with the limit of quantification being validated at 0.01 mg kg−1. The UPLC system generates narrow peaks (approx. 5 s), thus increasing peak height and improving sensitivity. This improved separation efficiency facilitates adequate resolution not only of the analytes but also of matrix interferences compared with conventional HPLC. The method developed could also resolve some geometric isomers. The main advantage of this approach is the high sample throughput achieved because of the short analysis time, which enables satisfactory separation of all the compounds in less than 5 min per sample.  相似文献   

20.
In this study, a novel analytical approach for simultaneous determination of hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol A (TBBPA), three brominated phenols, and four hydroxylated derivatives of polybrominated diphenyl ethers (OH-PBDEs) was developed and validated for muscle tissue of both lean and fatty fish. The rapid, simple, and high-throughput sample-preparation procedure was based on acetonitrile extraction then purification by dispersive solid-phase extraction (d-SPE) with a combination of C18 and primary–secondary amine (PSA) sorbents. Ultra-high performance liquid chromatography (UHPLC) coupled to tandem mass spectrometry (MS–MS) was used for identification and quantification of the analytes. Method recovery for both matrices ranged from 80 to 115 % with relative standard deviations (RSDs) <13 % for all analytes. Limits of quantification (LOQs) were in the range 0.1–1 μg kg?1 wet weight. The validated method was used for analysis of brominated compounds in 32 fish and five bivalve samples collected from different European markets within the monitoring survey organized in the framework of the CONffIDENCE project. Of the 12 targeted analytes, only α-HBCD, 2,4-dibromophenol (2,4-DBP), and 2,4,6-tribromophenol (2,4,6-TBP) were quantified in the samples. α-HBCD was found in six fish samples (herring and mackerel) in the range of 0.8–2.5 μg kg?1 wet weight. 2,4-DBP and 2,4,6-TBP were found in three blue mussel samples in the range of 19.6–43.5 and 2.3–7.5 μg kg?1 wet weight, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号