首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了一种基于低共熔溶剂(DESs)的液液微萃取-高效液相色谱联用(LLME-HPLC)技术用于测定食用油中的双酚A(BPA)的方法,对比了3种DES和甲醇、乙二醇对食用油中BPA的萃取效率,研究了温度、萃取时间和萃取剂体积对萃取效率的影响。结果表明:氯化胆碱/乙二醇组成的DES萃取率最高;低共熔溶剂用量100μL,萃取温度25℃,萃取时间5 min时,萃取效率最高。BPA的检测限和定量限分别为0.10 mg/L和0.50 mg/L,加标回收率在86.3%~109.9%范围内,RSD小于6%。方法可用于食用油中BPA的检测。  相似文献   

2.
A hollow fibre liquid phase microextraction for gas chromatographic determination of some p-hydroxybenzoic acid esters has been developed. Chlorobenzene containing tetradecane as internal standard was used for the extraction. Optimized extraction was carried out at room temperature for 40 min in the presence of 0.4 g mL−1 NaCl in the sample solution. Calibration was linear up to 30 mg L−1. Correlation coefficients were 0.996–0.998. Enrichment factors were 21, 95 and 154, and detection limits were 0.20, 0.03 and 0.01 μg mL−1 for methylparaben, ethylparaben and propylparaben, respectively. Reproducibility was acceptable with relative standard deviations up to 11.7%. The technique was tested for water and urine analysis.   相似文献   

3.
A new, rapid, and efficient microextraction technique named vortex‐assisted natural deep eutectic solvent microextraction has been developed for the preconcentration and determination of orthophosphate in real water samples. The method is based on the formation of the phosphomolybdenium blue complex followed by proposed microextraction procedure and subsequent spectrophotometric determination in a microcell. Screening study for the optimal composition of natural deep eutectic solvent was initially performed with different solvents, including choline chloride as hydrogen bond acceptor and different hydrogen bond donors. A ternary mixture of glucose‐choline chloride‐water was used as the most efficient extraction solvent. Response surface methodology based on the central composite design was used to optimize experimental parameters. Under optimal conditions, the calibration graph for orthophosphate determination was linear over the range of 2.0–80.0 µg/L (correlation coefficient of 0.9971) with a detection limit of 0.2 µg/L. The repeatability, reproducibility, and relative error values of the method were below 7%, indicating acceptable precision and accuracy. This approach, using natural deep eutectic solvent as an eco‐friendly solvent with high solubilization power and vortex mixing as an alternative energy source, represents a promising choice for a green separation and preconcentration methodology for determination of orthophosphate in real water samples.  相似文献   

4.
We present a novel dispersive liquid–liquid microextraction method based on the solidification of deep eutectic solvent coupled with high‐performance liquid chromatography with a variable‐wavelength detection for the detection of five benzoylureas in real water samples. In this work, a green solvent consisting of 1‐octyl‐3‐methylimidazolium chloride and 1‐dodecanol was used as an extraction solvent, yielding the advantages of material stability, low density, and a suitable freezing point near room temperature. Parameters that significantly affect extraction efficiency were optimized by the one‐factor‐at‐a‐time approach. Under optimal conditions, the recoveries of five target compounds were obtained ranging from 87.39 to 98.05% with correlation coefficients ranging from 0.9994 to 0.9997 for pure water. The limits of detection were in the range of 0.09–0.16 μg/L. The enrichment factors were in the range of 171–188. Linearities were achieved in the range of 0.5–500 μg/L. The proposed method was successfully applied to determine benzoylureas in environmental water samples with a satisfactory recovery of approximately 81.38–97.67%.  相似文献   

5.
Ternary deep eutectic solvent magnetic molecularly imprinted polymers grafted on silica were developed for the selective recognition and separation of theophylline, theobromine, (+)‐catechin hydrate, and caffeic acid from green tea through dispersive magnetic solid‐phase microextraction. A new ternary deep eutectic solvent was adopted as a functional monomer. The materials obtained were characterized by FTIR spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, NMR spectroscopy, and powder X‐ray diffraction. The practical recovery of the theophylline, theobromine, (+)‐catechin hydrate, and caffeic acid isolated with ternary deep eutectic solvent magnetic molecularly imprinted polymers in green tea were 91.82, 92.13, 89.96, and 90.73%, respectively, and the actual amounts extracted were 5.82, 4.32, 18.36, and 3.69 mg/g, respectively. The new method involving the novel material coupled with dispersive magnetic solid‐phase microextraction showed outstanding recognition, selectivity and excellent magnetism, providing a new perspective for the separation of bioactive compounds.  相似文献   

6.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

7.
A green extractant, hydrophobic deep eutectic solvent was first introduced for extraction of tetracycline, oxytetracycline, and chlortetracycline from environmental water samples prior to high‐performance liquid chromatography determination. Deep eutectic solvents consist of methyltrioctylammonium chloride and various medium‐chain alcohols/acids, and are easy in preparation, low cost and toxicity, desirably biodegradable, and biocompatible. The overall time required for sample preparation was 6 min and the volume of organic solvent used for extraction was only 400 µL. Under the optimized extraction condition, the present method yielded low limit of detection (0.5–2.0 ng/mL), acceptable precision (relative standard deviations < 9.7%), good linearity from 2.0 to 500 ng/mL (r2 ≥ 0.9991). This optimized procedure was applied for determination of tetracyclines in different water samples with desirable spiked recovery ranged from 77.5 to 87.6%. There is, therefore, a great potential to further expand application of the method for investigation of other ultra‐trace analyte(s) in environmental matrixes.  相似文献   

8.
An NH2-MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized for extraction and determination of Rhodamine (Rh) 6G from environmental and cosmetic samples. The deep eutectic solvent (DES) was prepared by mixing choline chloride and urea in a mole ratio of 1:2. NH2-MIL-53(Al)-DES(ChCl-Urea) nanocomposite was synthesized using the impregnation method at a ratio of 60:40 (w/w). The optimum conditions were determined after NH2-MIL-53(Al)-DES(ChCl-Urea) characterization was performed. The optimum conditions were determined as pH 8, adsorbent amount of 15 mg, total adsorption-desorption time of 6 min, and enrichment factor of 20. The recovery values of the solid-phase extraction method for water and cosmetic samples under optimum conditions were between 95% and 106%. NH2-MIL-53(Al)-DES(ChCl-Urea) nanocomposite was an economically advantageous adsorbent because of its reusability of 15 times. All analyses were performed using the ultraviolet-visible spectrophotometer. The linear range, limit of detection, and limit of quantification of the method were 100–1000, 9.80, and 32.68 μg/L, respectively. The obtained results showed that the synthesized nanocomposite is a suitable adsorbent for the determination of Rh 6G in water and cosmetic samples. The real sample applications were verified with the high-performance liquid chromatography system.  相似文献   

9.
A sample pretreatment method based on the combination of a three‐phase solvent extraction system and deep eutectic solvent‐based dispersive liquid–liquid microextraction has been introduced for the extraction of four organochlorine pesticides in cocoa samples before their determination by gas chromatography‐electron capture detection. A mixture of sodium chloride, acetonitrile, and potassium hydroxide solution is added to cocoa bean or powder. After vortexing and centrifugation of the mixture, the collected upper phase (acetonitrile) is removed and mixed with a few microliters of N,N‐diethanol ammonium chloride: pivalic acid deep eutectic solvent. Then it is rapidly injected into deionized water and a cloudy solution is obtained. Under optimum conditions, the limits of detection and quantification were found to be 0.011‐0.031 and 0.036‐0.104 ng/g, respectively. The obtained extraction recoveries varied between 74 and 92%. Also, intra‐ (n = 6) and interday (n = 4) precisions were less than or equal to 7.1% for the studied pesticides at a concentration of 0.3 ng/g of each analyte. The suggested method was applied to determine the studied organochlorine pesticide residues in various cocoa powders and beans gathered from groceries in Tabriz city (Iran) and aldrin and dichlobenil were found in some of them.  相似文献   

10.
A facile headspace single drop microextraction method was developed using deep eutectic solvent‐based magnetic bucky gel as the extraction solvent for the first time. The hydrophobic magnetic bucky gel was formed by combining choline chloride/chlorophenol deep eutectic solvent and magnetic multiwalled carbon nanotube nanocomposite. Magnetic susceptibility, high viscosity, high sorbing ability, and tunable extractability of organic analytes are the desirable advantages of the prepared gel. Using a rod magnet as a suspensor in combination with the magnetic susceptibility of the prepared gel resulted in a highly stable droplet. This stable droplet eliminated the possibility of drop dislodgement. The prepared droplet made it possible to complete the extraction process in high temperatures and elevated agitation rates. Furthermore, using larger micro‐droplet volumes without any operational problems became possible. These facts resulted in shorter sample preparation time, higher sensitivity of the method, and lower detection limits. Under the optimized conditions, an enrichment factor of 520–587, limit of detection of 0.05–0.90 ng/mL, and linearity range of 0.2–2000 ng/mL (coefficient of determination = 0.9982–0.9995) were obtained. Relative standard deviations were < 10%. This method was successfully coupled with gas chromatography and used for the determination of benzene, toluene, ethylbenzene, and xylene isomers as harmful volatile organic compounds in water and urine samples.  相似文献   

11.
A green and sensitive thin-film solid-phase microextraction method based on deep eutectic solvent was developed that enables simultaneous isolation, preconcentration, and determination of parabens in surface waters. Six new deep eutectic solvents were synthesized and used directly to prepare thin-film coatings on a stainless steel mesh support. Among the compounds obtained, the highest efficiency in the extraction of parabens was found for a material consisting of trihexyltetradecylphosphonium chloride and n-docosanol in a molar ratio of 1:2. For the proposed method, parameters affecting the extraction efficiency of parabens, such as the coating material, the desorption solvent, the volume of the sample, the pH of the sample, the extraction and desorption time, and the salting-out effect, were optimized. Under optimal conditions, the proposed method allowed us to achieve good precision between 3.6 and 6.5% and recovery ranging from 68.1 to 91.4%. The limits of detection range from 0.018 to 0.055 ng/mL.  相似文献   

12.
Based on the solidification of a hydrophobic deep eutectic solvent in air‐assisted liquid phase microextraction combined with gas chromatography and mass spectrometry, a green and sustainable microextraction technique was developed for extracting, separating, and detecting organophosphorus flame retardants in aqueous samples. In this study, some strategies were considered for overcoming or improving the challenges of conventional solvent microextraction procedures. In addition, a hydrophobic deep eutectic solvent with a freezing point near the ambient temperature was employed as an extraction phase, the dispersive solvent was substituted by the syringe pump process, and the centrifugation step was omitted by using salting‐out phenomenon. Further, the effect of the main independent variables was evaluated by using the chemometric methods in order to maximize the extraction efficiency of the procedure. Under optimal conditions, the calibration model was linear in the range of 0.01–25.0 µg/L. Limits of detection and quantitation were assessed at the concentration levels of 2–23 and 9–65 ng/L, respectively. The precision involving repeatability and reproducibility was evaluated by estimating the relative standard deviation, the levels of which were <6.6 and <8.7%, respectively. The applicability of the method was successfully evaluated by analyzing the target analytes in real aqueous samples, which illustrated satisfactory recoveries (95–104.61%).  相似文献   

13.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

14.
In situ synthesis of a deep eutectic solvent and homogeneous liquid–liquid microextraction performed in a narrow bore tube was developed for efficient extraction of irgaphos 168 and irganox 1010 in doogh and water samples packed in polypropylene packages. First, pH of the aqueous sample solutions containing the analytes is adjusted at 9. Then a hydrogen bond acceptor (choline chloride) and a hydrogen bond donor (oleic acid) are dissolved in the solution and vortexed to obtain a homogeneous solution. The solution is filled into a narrow bore tube, in which its bottom was clogged by a septum. Then hydrochloric acid solution is injected into the solution by a syringe. The tube is placed in an ultrasonic bath. During this step, the droplets of choline chloride:oleic acid deep eutectic solvent are produced. The method indicated high enrichment factor (435 for irgaphos 168 and 488 for irganox 1010), low limits of detection (0.03 and 0.09 ng/mL for irgaphos 168 and irganox 1010, respectively) and quantification (0.13 and 0.29 ng/mL for irgaphos 168 and irganox 1010), good recovery (74 and 83% for irgaphos 168 and irganox 1010, respectively), and satisfactory repeatabilities (relative standard deviations ≤12%) can be obtained using the developed method.  相似文献   

15.
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl‐ menthol‐based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air‐assisted dispersive liquid–liquid microextraction method for preconcentration and extraction of benzophenone‐type UV filters from aqueous samples followed by high‐performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl‐ menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high‐performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone‐type filters in environmental water samples with relative recoveries of 88.8–105.9%.  相似文献   

16.
A simple, rapid, and efficient method of ultrasonic nebulization extraction assisted dispersive liquid–liquid microextraction was developed for the simultaneous determination of six parabens in cosmetic products. The analysis was carried out by gas chromatography. Water was used as the dispersive solvent instead of traditional organic disperser. The experimental factors affecting the extraction yield, such as the extraction solvent and volume, extraction time, dispersive solvent and volume, ionic strength, and centrifuging condition were studied and optimized in detail. The limit of detections for the target analytes were in the range of 2.0–9.5 μg/g. Good linear ranges were obtained with the coefficients ranging from 0.9934 to 0.9969. The proposed method was successfully applied to the analysis of six parabens in 16 cosmetic products. The recoveries of the target analytes in real samples ranged from 81.9 to 108.7%, and the relative standard deviations were <5.3%.  相似文献   

17.
A novel type of solvent named deep eutectic solvent (DES) has been considered as a green ionic liquid analogue. A novel method was developed for enrichment and speciation of chromium ion from water and food samples based on deep eutectic solvent and ultrasonic extraction. The procedure for this method was comprised of Cr(III) complex formation with a hydrophobic complexing agent (Z)‐N‐(3,5‐diphenyl‐1H‐pyrrol‐2‐yl)‐3,5‐diphenyl‐2H‐pyrrol‐2‐imine (azadipyrromethene dye). Metal complex was entrapped in a deep eutectic solvent as an extracting solvent. While Cr(III) recovery was quantitative, the recovery of Cr(VI) was found 5%. After reduction of Cr(VI) to Cr(III), the method was applied for determination of total chromium(III) ion. The amount of Cr(VI) was calculated as subtracting of Cr(III) from total chromium ion. Various analytical parameters were optimized. The certified reference materials were analyzed and standard addition method also carried out to real samples to check the accuracy of the developed method. Preconcentration factor was found to be 50. The limit of detection of chromium(III) was found to be 4.3 ng l‐1. The precision of developed method as the relative standard deviation (RSD) was found as 3.5 %. The developed method was applied successfully for the speciation of chromium ions in water and food samples.  相似文献   

18.
A green and efficient sample preparation method using a deep eutectic solvent‐based ultrasounds‐assisted dispersive liquid–liquid microextraction with solidification of the aqueous phase followed by high performance liquid chromatography analysis was developed for preconcentration and determination of heavy metals in environmental samples. In the proposed method, a novel, low density deep eutectic solvent was prepared by mixing trihexyl(tetradecyl)phosphonium chloride and thiosalicylic acid at a molar ratio of 1:2 and used both as an extractant and complexing agent. Ultrasound was used to disperse the extractant in the aqueous phase of the sample. Then, the phases were separated by centrifugation, after which the aqueous phase was frozen and the surface extractant phase was dissolved in a small volume of acetonitrile and subjected to liquid chromatographic analysis. The proposed method provided precisions (relative standard deviation, n = 5) in the range of 2.6–4.7%. The limit of detection were 0.05, 0.13, 0.06, and 0.11 µg/L for Pb(II), Cd(II), Co(II), Ni(II), respectively. The enhancement factors were equal to 154, 159, 162, and 158 for lead(II), cadmium(II), cobalt(II), and nickel(II), respectively. The accuracy of the proposed method was evaluated using certified reference materials (CA011b – hard drinking water, NIST 1643e – trace elements in water, TMRAIN‐04 – simulated rain sample).  相似文献   

19.
In recent years, hydrophobic deep eutectic solvents as new generation of green solvents have attracted wide attention in liquid microextraction technique. In this article, four hydrophobic deep eutectic solvents composed of trioctylmethylammonium chloride and oleic acid were designed and prepared firstly. Combined with high‐performance liquid chromatography, these deep eutectic solvents were used as an extraction solvent in vortex‐assisted dispersive liquid–liquid microextraction for the selective enrichment and indirect determination of trace nitrite from real water and biological samples. This method is based on the diazotization‐coupling reaction of nitrite with p‐nitroaniline and diphenylamine in acidic water, and then the nitrite is quantified indirectly by measuring the obtained azo compounds. Some factors influencing the extraction efficiency, including the reaction and extraction conditions, were investigated. Under the optimized conditions, the method has a linear range of 1–300 μg/L with a correlation coefficient of 0.9924, limit of detection of 0.2 μg/L, limit of quantitation of 1 μg/L, intraday and interday relative standard deviations of 4.0 and 6.0%. This method was successfully applied in determination of nitrite from three environmental water and two biological samples with the recovery in the range of 90.5–115.2%. In addition, these results were well agreement with those obtained by the conventional Griess method.  相似文献   

20.
谭婷  乔鑫  万益群  邱洪灯 《色谱》2015,33(9):934-937
低共熔溶剂被用作亲水作用色谱流动相的新型改性剂。选用硅胶柱(150 mm×4.6 mm, 3 μm),以乙腈与低共熔溶剂(氯化胆碱-乙二醇(摩尔比为1:3))的混合溶液为流动相,考察了6个碱基与核苷的色谱分离效果,并讨论了低共熔溶剂在流动相中的比例及温度条件对分离的影响。结果表明,与传统的水相流动相条件相比,在加入低共熔溶剂改性后的流动相条件下,碱基与核苷分离效果得到明显的改善,尤其是胞嘧啶与胞苷能达到完全分离;同时,随着低共熔溶剂在乙腈中浓度的增加,6个碱基与核苷在色谱柱上的保留均有不同程度的减小,其中胞苷的保留减小最为显著;随着柱温的升高,碱基与核苷的保留同样有所减小。本文验证了低共熔溶剂作为亲水作用色谱流动相改性剂的可行性,可在一定程度上解决传统亲水作用色谱分离的困难。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号