首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many tetrahydrofuran (THF) hydrate properties are similar to those of gas hydrates. In the present work THF hydrate dissociation in four types of porous media is studied. THF solution was cooled to 275.15 K with formation of the hydrate under ambient pressure, and then it dissociated under ambient conditions. THF hydrate dissociation experiments in each porous medium were conducted three times. Magnetic resonance imaging (MRI) was used to obtain images. Decomposition time, THF hydrate saturation and MRI mean intensity (MI) were measured and analyzed. The experimental results showed that the hydrate decomposition time in BZ-4 and BZ-3 was similar and longer than that in BZ-02. In each dissociation process, the hydrate decomposition time of the second and third cycles was shorter than that of the first cycle in BZ-4, BZ-3, and BZ-02. The relationship between THF hydrate saturation and time is almost linear.  相似文献   

2.
Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO2 storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3–20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas hydrates. This comprehensive review summarizes the importance of spectroscopic analytical techniques to our understanding of the structure and dynamics of gas hydrate systems, and highlights selected examples that illustrate the utility of these individual methods.  相似文献   

3.
Tetrahydrofuran (THF) hydrate was formed in bulk as well as in glass beads pack with a mean diameter of 3.0 mm by controlling the temperature under ambient pressure. Images of THF hydrate formation procedure were obtained using the magnetic resonance imaging (MRI) technique. The experiment results showed that MRI is an effective method for the detection of hydrate formation. Saturation of hydrate formed both in bulk and glass beads can be confirmed by intensity integration of MRI images.  相似文献   

4.
Quantification and characterization of hydrate formation and dissociation in sediments are highly important in the study of the physical properties of hydrate-bearing sediments. In this paper, the behavior of CO2 hydrate formation and dissociation in sand is studied using the nuclear magnetic resonance (NMR) technique. The components of the pore space, including gas, liquid water, and hydrate, were quantified using a convenient method by which the hydration number was determined. No abrupt change in the relaxation behavior of the sample was found during hydrate formation and dissociation. In addition, the value of mean-log T22 appeared to be proportional to the liquid water content of the sample with or without the pore hydrate. A straightforward explanation is that the liquid water in the pore space remains in contact with grain surfaces, and relaxation occurs mainly at the grain surface. The results suggest that, rather than coating the grains, the hydrate is pore-filling or cementing.  相似文献   

5.
5A分子筛粉末对四氢呋喃水合物的生成及分解过程的影响   总被引:3,自引:0,他引:3  
在低于0 ℃和常压下, 将粉碎并筛分后的成型5A分子筛粉末加入四氢呋喃-水(二者质量比为19:81)体系中, 用显微镜观察5A分子筛粉末的存在对四氢呋喃水合物生成和分解过程的影响. 结果表明, 5A分子筛粉末能够促进四氢呋喃水合物的生成. 5A分子筛粉末存在下, 四氢呋喃水合物生成方式主要表现为两种, 脉状生成和块状生成; 同时5A分子筛粉末能够提高四氢呋喃水合物结晶所需要的温度, 降低四氢呋喃水合物的分解温度; 而且5A分子筛粉末粒径的大小及分布对四氢呋喃水合物生成及分解的特性也有很大影响.  相似文献   

6.
Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.  相似文献   

7.
This paper presents a short overview of the contribution that NMR spectroscopy has made to clathrate science. Both have been in the realm of the experimental scientist for about 50 years. Different degrees of development of NMR spectroscopy have led to increasing sophistication in the kind of information available, best exemplified by consideration of studies on clathrate hydrates. Initially most results related to guest and host dynamics, progressing to site and structure specific measurement of chemical shift tensors and isotropic shifts that led to the ability to measure sample compositions. Currently developments are leading to time-resolved information, providing new insights into processes such as hydrate formation, as well as magnetic resonance imaging, leading to space-resolved studies of hydrate formation and decomposition. B NRCC No. 42188. Translated fromZhurnal Strukturnoi Khimii, Vol. 40, No. 5, pp. 809–821, September–October, 1999.  相似文献   

8.
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are two extremely important techniques with applications ranging from molecular structure determination to human imaging. However, in many cases the applicability of NMR and MRI are limited by inherently poor sensitivity and insufficient nuclear spin lifetime. Here we demonstrate a cost‐efficient and fast technique that tackles both issues simultaneously. We use the signal amplification by reversible exchange (SABRE) technique to hyperpolarize the target 1H nuclei and store this polarization in long‐lived singlet (LLS) form after suitable radiofrequency (rf) pulses. Compared to the normal scenario, we achieve three orders of signal enhancement and one order of lifetime extension, leading to 1H NMR signal detection 15 minutes after the creation of the detected states. The creation of such hyperpolarized long‐lived polarization reflects an important step forward in the pipeline to see such agents used as clinical probes of disease.  相似文献   

9.
Investigations into the structures of gas hydrates, the mechanisms of formation, and dissociation with modern instruments on the experimental aspects, including Raman, X-ray, XRD, X-CT, MRI, and pore networks, and numerical analyses, including CFD, LBM, and MD, were carried out. The gas hydrate characteristics for dissociation and formation are multi-phase and multi-component complexes. Therefore, it was important to carry out a comprehensive investigation to improve the concept of mechanisms involved in microscale porous media, emphasizing micro-modeling experiments, 3D imaging, and pore network modeling. This article reviewed the studies, carried out to date, regarding conditions surrounding hydrate dissociation, hydrate formation, and hydrate recovery, especially at the pore-scale phase in numerical simulations. The purpose of visualizing pores in microscale sediments is to obtain a robust analysis to apply the gas hydrate exploitation technique. The observed parameters, including temperature, pressure, concentration, porosity, saturation rate, and permeability, etc., present an interrelationship, to achieve an accurate production process method and recovery of gas hydrates.  相似文献   

10.
The structure of folic acid in solution was investigated by nuclear magnetic resonance (NMR) and theoretical calculations. Dynamical information and geometrical constraints were obtained by carbon-13 relaxation study, homo-nuclear NOESY spectra and hetero-nuclear 1H-13C NOE experiments. This set of experimental data was used for the molecular mechanics and molecular dynamic calculations. The accuracy of the final structure was established by the R(NMR) factor, which was calculated comparing the experimental NOESY cross-peaks intensities and the corresponding values simulated by using the complete relaxation matrix analysis (CORMA) approach.  相似文献   

11.
A new molecular precursor strategy has been used to prepare a series of single-site catalysts that possess isolated iron centers supported on mesoporous SBA-15 silica. The iron centers were introduced via grafting reactions of the tris(tert-butoxy)siloxy iron(III) complex Fe[OSi(O(t)Bu)(3)](3)(THF) with SBA-15 in dry hexane. This complex reacts cleanly with the hydroxyl groups of SBA-15 to eliminate HOSi(O(t)Bu)(3) (as monitored by (1)H NMR spectroscopy) with formation of isolated surface species of the type identical with SiO-Fe-[OSi(O(t)Bu)(3)](2)(THF). In this way, up to 21% of the hydroxyl sites on SBA-15 were derivatized (0.23 Fe nm(-)(2)), and iron loadings in the range of 0.0-1.90% were achieved. The structure of the surface-bound iron species, as determined by spectroscopic methods (electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), UV-vis, and in situ infrared measurements) and by elemental analyses, contains a pseudotetrahedral iron(III) center. The THF ligand of this surface-bound complex was quantitatively displaced by acetonitrile (by (1)H NMR spectroscopy). Calcination of these materials at 300 degrees C for 2 h under oxygen resulted in removal of all organic matter and site-isolated iron surface species that are stable to condensation to iron oxide clusters. Spectroscopic data (UV-vis and EPR) suggest that the iron centers retain a mononuclear, pseudotetrahedral iron(III) structure after calcination. The calcinated, iron-grafted SBA-15 materials exhibit high selectivities as catalysts for oxidations of alkanes, alkenes, and arenes, with hydrogen peroxide as the oxidant.  相似文献   

12.
The dynamics of methane hydrate growth and decomposition were studied by nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). Three well-known large molecule guest substances (LMGS) were used as structure H hydrate formers: 2,2-dimethylbutane (NH), methylcyclohexane (MCH), tert-butyl methyl ether (TBME). In addition, the impact of a non-hydrate former (n-heptane/nC7) was studied. The methane diffusion and hydrate growth were monitored by recording the 2H NMR spectra at 253 K and approximately 4.5 MPa for 20 h. The results revealed that methane diffuses faster in TBME and NH, slower in nC7, and slowest in MCH. The TBME system gives the fastest hydrate formation kinetics followed by NH, MCH, and nC7. The conversion of water into hydrate was also observed. The imaging study showed that TBME has a strong affinity toward ice, which is not the case for the NH and MCH systems. The degree of ice packing was also found to affect the LMGS distribution between ice particles. Highly packed ice increases the mass transfer resistance and hence limits the contact between LMGS and ice. It was also found that "temperature ramping" above the ice point improves the conversion significantly. Finally, hydrates were found to dissociate quickly within the first hour at atmospheric pressure and subsequently at a much slower rate. Methane dissolved in LMGS was also seen. The residual methane in hydrate phase and dissolved in LMGS phase explain the faster kinetics during hydrate re-formation.  相似文献   

13.
Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown that the structure can be changed from a charge solvated to a zwitterionic structure, thereby demonstrating that HDX can be an invasive technique, in fact changing the structure of the analyte. These results emphasize that more fundamental work is required in order to understand the underlying mechanisms in two of the most important structural techniques in MS.  相似文献   

14.
The formation of hydrates from a methane-ethane-propane mixture is more complex than with single gases. Using nuclear magnetic resonance (NMR) and high-pressure powder X-ray diffraction (PXRD), we have investigated the structural properties of natural gas hydrates crystallized in the presence of kinetic hydrate inhibitors (KHIs), two commercial inhibitors and two biological ice inhibitors, or antifreeze proteins (AFPs). NMR analyses indicated that hydrate cage occupancy was at near saturation for controls and most inhibitor types. Some exceptions were found in systems containing a new commercial KHI (HIW85281) and a recombinant plant AFP, suggesting that these two inhibitors could impact the kinetics of cavity formation. NMR analysis confirmed that the hydrate composition varies during crystal growth by kinetic effects. Strikingly, the coexistence of both structures I (sI) and II (sII) were observed in NMR spectra and PXRD profiles. It is suggested that sI phases may form more readily from liquid water. Real time PXRD monitoring showed that sI hydrates were less stable than sII crystals, and there was a conversion to the stable phase over time. Both commercial KHIs and AFPs had an impact on hydrate metastability, but transient sI PXRD intensity profiles indicated significantly different modes of interaction with the various inhibitors and the natural gas hydrate system.  相似文献   

15.
Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade‐offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid‐solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in PT space as a function of the concentration of THF. In situ high‐pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and 13C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas–liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas–solid reaction do not agree nearly as well.  相似文献   

16.
The effect of low-dosage water-soluble hydroxyethyl cellulose (approximate MW~90,000 and 250,000) as a member of hydroxyalkyl cellulosic polymer group on methane hydrate stability was investigated by monitoring hydrate dissociation at pressures greater than atmospheric pressure in a closed vessel. In particular, the influence of molecular weight and mass concentration of hydroxyethyl cellulose (HEC) was studied with respect to hydrate formation and dissociation. Methane hydrate formation was performed at 2℃ and at a pressure greater than 100 bar. Afterwards, hydrate dissociation was initiated by step heating from -10℃ at a mild pressure of 13 bar to 3℃, 0℃ and 2℃. With respect to the results obtained for methane hydrate formation/dissociation and the amount of gas uptake, we concluded that HEC 90,000 at 5000 ppm is suitable for long-term gas storage and transportation under a mild pressure of 13 bar and at temperatures below the freezing point.  相似文献   

17.
The structure and dynamics of trimethylene oxide (TMO) and ethylene oxide (EO) structure I (sI) hydrates are reported from single-crystal X-ray diffraction and 2H NMR spectroscopic measurements. The guest molecule positions in the large cage were determined with considerable improvement over previous diffraction work so that a dynamic model that was consistent with these orientations could be developed to explain the 2H NMR data. Reorientations are shown to take place among both symmetry-related and symmetry-independent sites, 16 positions in all. Because of the prochiral nature of the molecules, both guests show 2H NMR line shapes with large asymmetry parameters, rather unusual for guest molecules in the sI hydrate large cage. The results also show that the dipolar axis of the TMO molecule lies close to the 4 bar axis of the cage on average, whereas for EO, this is not the case. For TMO, progressive alignment of the polar axis with decrease of temperature then allows the dipoles to interact more strongly until dipole reversal is quenched at the ordering transition. The lack of ordering of EO is consistent with the much weaker alignment of the molecular dipoles along the 4 bar axis. With the new complementary information on the structure and dynamics from crystallography and NMR, it is possible to understand why the large cage guests order in the large cage of sI hydrate for TMO hydrate but not for EO hydrate.  相似文献   

18.
Influence of 3A molecular sieve on tetrahydrofuran (THF) hydrate formation   总被引:1,自引:0,他引:1  
Visual observation of the THF hydrate formation process in the presence of a 3A molecular sieve has been made at normal atmosphere and below a temperature of zero by microscopy. The results indicate that a 3A molecular sieve can induce the nucleation of the THF hydrate and promote the THF hydrate growth. With the existence of a 3A molecular sieve, the growth rate of THF hydrate is between 0.01 and 0.05 μm/s. In comparison with the system without any 3A molecular sieve, the growth rate increases about 4 nm/s. After the THF hydrate grows into megacryst, the crystals will recombine and partially change under the same condition.  相似文献   

19.
Poly-[N-vinylcaprolactam] (PVCAP) and its related compounds are specific polymeric compounds for inhibiting hydrate formation. To clarify the inhibition mechanism of these compounds on hydrate nucleation at the molecular level, we measured the mass spectra of clusters generated from the fragmentation of liquid droplets including N-methylcaprolactam (NMCAP; functional group of PVCAP). By comparing the mass spectra of clusters of the solutions--pure D2O, tetrahydrofuran (THF)-D2O, NMCAP-D2O, and THF-NMCAP-D2O--it was found that the interaction of NMCAP with D2O was much stronger than that of THF with D2O. The relative intensity ratio of D+(NMCAP)m(D2O)n clusters to all the clusters observed for the NMCAP-D2O (1:250) mixed solution was 0.45. On the other hand, the relative intensity ratio of D+(THF)1(D2O)n clusters to all the clusters observed for the THF-D2O (1:17) mixed solution was 0.15. In the case of the THF-NMCAP-D2O three-component mixed solution, the NMCAP-D2O interaction was more predominant than the THF-D2O interaction, even at a lower NMCAP concentration. NMCAP reduces free mobile water molecules around NMCAP, but THF does not. This correlates with the facts that THF forms its hydrate below the freezing point and that PVCAP works as an inhibitor of gas hydrates.  相似文献   

20.
The inhibition activities of two antifreeze proteins (AFPs) on the formation of tetrahydrofuran (THF) clathrate hydrate have been tested. AFPs from fish (wfAFP) and insect (CfAFP) changed the morphology of growing THF hydrate crystals. Also, both AFPs showed higher activities in inhibiting the formation THF hydrate than a commercial kinetic inhibitor, poly(vinylpyrrolidone) (PVP). Strikingly, both AFPs also showed the ability to eliminate the "memory effect" in which the crystallization of hydrate occurs more quickly after the initial formation. This is the first report of molecules that can inhibit the memory effect. Since the homogeneous nucleation temperature for THF hydrate was measured to be 237 K, close to that observed for ice itself, the action of kinetic inhibitors must involve heterogeneous nucleation. On the basis of our results, we postulate a mechanism for heterogeneous nucleation, the memory effect and its elimination by antifreeze proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号