首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant growth regulator chlormequat, an involatile quaternary ammonium salt, has been quantified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). Restrictions for quantitative MALDI-TOFMS analysis, such as irreproducible crystallisation and unsatisfactory laser stability, have been overcome by the application of two synthesised isotopically labelled standards and the optimisation of the measurement protocol. Data acquisition at constant laser power was compared to data acquisition at approximately constant ion abundance of the relevant ions (analyte and internal standards). Data acquisition at constant ion abundance performed better and enabled a high number of consecutive firings to the same sample deposition area. Furthermore an increased sample-to-sample repeatability and a high reproducibility over several weeks without re-calibration have been attained by this method. Linearity over three orders of magnitude (0.05 to 30 ng/microL chlormequat), with a correlation coefficient of 0.9997, was achieved using [13C3]-chlormequat as internal standard. Limit of detection and limit of determination were determined to be in the low pg/microL range for pure standard solutions. Thin-layer chromatography was applied for the removal of high amounts of choline, which is often present in plant tissue extracts and can adversely affect the ionisation and detection of chlormequat by MALDI-TOFMS. The use of two internal standards ([13C3]- and [2H9]-chlormequat) enabled direct quantification and simultaneous control of the recovery.  相似文献   

2.
A novel class of molecules with structure N-[3-(heteroaryl)propyl]-6-methoxynaphthalene-2-carboxamides 8-13 were synthesized by condensing 6-methoxy-2-naphthoyl chloride 1 with 3-(heteroaryl)propyl amines 2-7. Compounds 8-12 were evaluated in vitro, in P388 murine lymphocytic leukemia cell line (P388) using SRB assay for cytotoxicity and in adriamycin resistant P388 murine lymphocytic leukemia cell line (P388/ADR) using MTT assay for resistant reversal activity. Compounds 8-12 were non-toxic at lower dose of 20 microg/ml, and effectively reversed adriamycin resistance. However, at higher doses (40, 80 microg/ml) they showed significant cytotxicity and hence reversal potency was not determined at these concentrations.  相似文献   

3.
We describe a novel method for the determination of the concentration and labeling degree of ethanol originating from 1-13C-labeling experiments. This method is suitable for high-throughput metabolic flux analysis because of the possible parallel sample preparation and fast final analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). In a closed vial containing culture supernatant, ethanol is enzymatically oxidized to acetaldehyde. The acetaldehyde formed evaporates and is readily trapped in a second enclosed but open vial containing acidified 2,4-dinitrophenylhydrazine (DNPH). The 2,4-acetaldehyde dinitrophenylhydrazone (Ac-DNPH) that is formed is insoluble under these conditions. This leads to a constant conversion rate of the acetaldehyde produced from ethanol after 14 h minimum incubation time. MALDI-TOFMS was used to quantify the formed Ac-DNPH with [13C2]-ethanol as internal standard. The relative signal intensities of the unlabeled ethanol derivative as well as of [1-13C]-ethanol were linearly related to the ethanol concentration within a range of 1 to 50 mM with a limit of detection of 0.6 mM, a range which is sufficient for flux analysis in microtiter plate fermentation experiments. The method allows the estimation of the [1-13C]-ethanol originating from 1-13C-labeling experiments of Saccharomyces cerevisiae strains. In experiments where the expected flux range was exceeded, unlabeled ethanol was determined with a linear range from 30 to 500 mM. Ethanol quantification using this method was compared with enzymatic analysis and exhibited differences of less than 3.3% on average. Comparison of flux partitioning ratios between glycolysis and the pentose-phosphate pathway (PPP) based on MALDI-TOFMS and gas chromatography (GC)/MS methods showed good agreement, with differences for ethanol and alanine labeling of only 4.3%.  相似文献   

4.
A sensitive and rugged LC/MSMS method was developed for a comprehensive in vitro metabolic interaction screening assay with N-in-1 approach reported earlier. A cocktail consisting of ten cytochrome P450 (CYP)-selective probe substrates with known kinetic, metabolic and interaction properties in vivo was incubated in a pool of human liver microsomes, and metabolites of melatonin (CYP1A2), coumarin (CYP2A6), bupropion (CYP2B6), amodiaquine (CYP2C8) tolbutamide (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A4) and testosterone (CYP3A4) were simultaneously analysed with a single LC/MSMS run. Altogether, 13 metabolites and internal standard phenacetin were analysed in multiple reaction mode. Polarity switching mode was utilized to acquire negative ion mode electrospray data for hydroxychlorzoxazone and positive ionization data for the rest of the analytes. Fast gradient elution was applied, giving total injection cycle of 8 min. The method was modified for two different LC/MSMS systems, and was validated for linear range, detection limit, accuracy and precision for each metabolite. In addition, cocktail inhibition system was further tested using monoclonal anti-CYP antibodies as inhibitors for each probe reaction.  相似文献   

5.
The role of single electron transfer (SET) in P450-catalyzed N-dealkylation reactions has been studied using the probe substrates N-cyclopropyl-N-methylaniline (2a) and N-(1'-methylcyclopropyl)-N-methylaniline (2b). In earlier work, we showed that SET oxidation of 2a by horseadish peroxidase leads exclusively to products arising via fragmentation of the cyclopropane ring [Shaffer, C. L.; Morton, M. D.; Hanzlik, R. P. J. Am. Chem. Soc. 2001, 123, 8502-8508]. In the present study, we found that liver microsomes from phenobarbital pretreated rats (which contain CYP2B1 as the predominant isozyme) oxidize [1'-(13)C, 1'-(14)C]-2a efficiently (80% consumption in 90 min). Disappearance of 2a follows first-order kinetics throughout, indicating a lack of P450 inactivation by 2a. HPLC examination of incubation mixtures revealed three UV-absorbing metabolites: N-methylaniline (4), N-cyclopropylaniline (6a), and a metabolite (M1) tentatively identified as p-hydroxy-2a, in a 2:5:2 mole ratio, respectively. 2,4-Dinitrophenylhydrazine trapping indicated formation of formaldehyde equimolar with 6a; 3-hydroxypropionaldehyde and acrolein were not detected. Examination of incubations of 2a by (13)C NMR revealed four (13)C-enriched signals, three of which were identified by comparison to authentic standards as N-cyclopropylaniline (6a, 33.6 ppm), cyclopropanone hydrate (11, 79.2 ppm), and propionic acid (12, 179.9 ppm); the fourth signal (42.2 ppm) was tentatively determined to be p-hydroxy-2a. Incubation of 2a with purified reconstituted CYP2B1 also afforded 4, 6a, and M1 in a 2:5:2 mole ratio (by HPLC), indicating that all metabolites are formed at a single active site. Incubation of 2b with PB microsomes resulted in p-hydroxylation and N-demethylation only; no loss or ring-opening of the cyclopropyl group occurred. These results effectively rule out the participation of a SET mechanism in the P450-catalyzed N-dealkylation of cyclopropylamines 2a and 2b, and argue strongly for the N-dealkylation of 2a via a carbinolamine intermediate formed by a conventional C-hydroxylation mechanism.  相似文献   

6.
Sample preparation methods and data acquisition protocols were optimized for the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to high-throughput quantitative analysis of low molecular mass substrates and products of an enzyme-catalyzed reaction. Using a deuterlum-labeled internal standard, precise standard curves were obtained (r(2) = 0.9998) over two orders of magnitude of concentration of rac-1-phenylethylamine (PEA), which is converted to 2-methoxy-N-[(1R)-1-phenylethyl]acetamide (MET) by a lipase-catalyzed reaction with ethylmethoxyacetate (EMA) as second substrate. Reliable relative standard deviations were achieved (< or =5%) using automated analysis with peak intensity ratios between 0.2 and 5 of analyte to internal standard. This method permitted quantitative analysis of the lipase reaction, producing results comparable to those from gas chromatographic (GC) analysis in the dynamic range of GC. This work shows that MALDI-TOFMS can be applied for the high-throughput screening of enzymes.  相似文献   

7.
Structural characterization of compounds analogous to the proposed intermediates in the Mitsunobu esterification process is achieved by the combined use of NMR spectroscopy and X-ray diffractometric studies. The results show that compounds (t-BuNH)P(mu-N-t-Bu)(2)P[(N-t-Bu)(N-(CO(2)R)-N(H)(CO(2)R))] [R = Et (11), i-Pr (12)], obtained by treating [(t-Bu-NH)P-mu-N-t-Bu](2) (10) with diethylazodicarboxylate (DEAD) or diisopropylazodicarboxylate (DIAD), respectively, have a structure with the NH proton residing between the two nitrogen atoms ((P)N(t-Bu) and (P)N-N(CO(2)Et)); this is the tautomeric form of the expected betaine (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(NH-t-Bu)(N-(CO(2)R)-N(-)(CO(2)R)]. Treatment of ClP(mu-N-t-Bu)(2)P[(N-t-Bu){N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr)] (6) with 2,6-dicholorophenol affords (2,6-Cl(2)-C(6)H(3)-O)P(mu-N-t-Bu)(2)P(+)[(NH-t-Bu){N[(CO(2)i-Pr)(HNCO(2)i-Pr)]}](Cl(-))(2,6-Cl(2)-C(6)H(3)-OH) (14) that has a structure similar to that of (CF(3)CH(2)O)P(mu-N-t-Bu)(2)P(+)[(NH-t-Bu){N[(CO(2)i-Pr)(HNCO(2)i-Pr)]}](Cl(-)) (13), but with an additional hydrogen bonded phenol. Both of these have the protonated betaine structure analogous to that of Ph(3)P(+)N(CO(2)R)NH(CO(2)R)(R'CO(2))(-) (2) proposed in the Mitsunobu esterification. Two other compounds, (ArO)P(mu-N-t-Bu)(2)P(+)(NH-t-Bu){N(CO(2)i-Pr)(HNCO(2)i-Pr)}(Cl(-)) [Ar = 2,6-Me(2)C(6)H(3)O- (15) and 2-Me-6-t-Bu-C(6)H(3)-O- (16)], are also prepared by the same route. Although NMR tube reactions of 11 or 12 with tetrachlorocatechol, catechol, 2,2'-biphenol, and phenol revealed significant changes in the (31)P NMR spectra, attempted isolation of these products was not successful. On the basis of (31)P NMR spectra, the phosphonium salt structure (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)R)-N(H)(CO(2)R)](ArO(-)) is proposed for these. The weakly acidic propan-2-ol or water did not react with 11 or 12. Treatment of 12 with carboxylic acids/ p-toluenesulfonic acid gave the products (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr)](ArCO(2)(-)) [Ar = Ph (18), 4-Cl-C(6)H(4)CH(2) (19), 4-Br-C(6)H(4) (20), 4-NO(2)-C(6)H(4) (21)] and (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr)](4-CH(3)-C(6)H(4)SO(3)(-)) (22) that have essentially the same structure as 2. Compound 18 has additional stabilization by hydrogen bonding, as revealed by X-ray structure determination. Finally it is shown that the in situ generated (t-BuNH)P(mu-N-t-Bu)(2)P(+)[(HN-t-Bu){N-(CO(2)Et)-N(H)(CO(2)Et)](4-NO(2)-C(6)H(4)CO(2)(-)) can also effect Mitsunobu esterification. A comparison of the Ph(3)P-DIAD system with the analogous synthetically useful Ph(3)P-dimethyl acetylenedicarboxylate (DMAD) system is made.  相似文献   

8.
Ab initio equation-of-motion coupled cluster calculations have been carried out to evaluate one-, two-, and three-bond 13C-13C, 15N-13C, 31P-13C coupling constants in benzene, pyridine, pyridinium, phosphinine, and phosphininium. The introduction of N or P heteroatoms into the aromatic ring not only changes the magnitudes of the corresponding X-C coupling constants (J, for X = C, N, or P) but also the signs and magnitudes of corresponding reduced coupling constants (K). Protonation of the heteroatoms also produces dramatic changes in coupling constants and, by removing the lone pair of electrons from the sigma-electron framework, leads to the same signs for corresponding reduced coupling constants for benzene, pyridinium, and phosphininium. C-C coupling constants are rather insensitive to the presence of the heteroatoms and protonation. All terms that contribute to the total coupling constant (except for the diamagnetic spin-orbit (DSO) term) must be computed if good agreement with experimental data is to be obtained.  相似文献   

9.
N-(Dicyclohexyl)acetylpiperidine-4-benzylidene-4-carboxylic acid (1) is an excellent in vitro inhibitor of 5 alpha-reductase (5 alpha R). Compound 1 showed, however, much lower inhibition activity of 5 alpha R in vivo than in vitro, which might be caused by poor membrane permeability. The methyl ester of 1 (1a) was therefore tested as a model prodrug to see if it has better permeability properties than the corresponding acid 1. It was also monitored that this methyl ester was cleaved into the active compound 1 within the DU145 cells. Quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) methods were established with reliable linearity factors (0.996 for MALDI-TOFMS and 0.998 for HPLC/MS/MS) and reproducibility (relative standard deviation = 6.5% for MALDI-TOFMS and 2.8% for HPLC/MS/MS). The samples for MS analysis were effectively prepared from the cell homogenates using solid-phase extraction, with a high recovery of 90% on average. The intracellular amount of 1a (1.7 nmol) was much higher than that of 1 (0.032 nmol) in DU145 cells after 6 h of incubation. After incubation with the ester (1a), the cleaved acid (1) was detected within the cells. The concentration of acid 1 (0.045 nmol) in this experiment was higher than the acid content (0.032 nmol) after direct incubation with 1. Surprisingly, high amounts of the cleaved compound 1 were found outside the cells after 6 h of incubation with 1a.  相似文献   

10.
11.
Moricizine hydrochloride is an orally effective antiarrhythmic agent currently marketed in the Soviet Union and undergoing clinical testing in the United States. To facilitate the simultaneous analysis of unlabeled and 13C6-labeled moricizine in human plasma, a specific and sensitive method employing liquid-liquid extraction followed by thermospray liquid chromatography-mass spectrometry (LC-MS) was developed. Plasma samples, after addition of [2H11]moricizine as an internal standard, were extracted into methylene chloride under alkaline conditions. Extracts were evaporated, reconstituted with mobile phase, and chromatographed on an ODS column. The LC mobile phase consisted of methanol-0.1 M ammonium acetate containing 0.2% triethylamine (65:35) and it was used at a flow-rate of 1.5 ml/min. Under these conditions, moricizine and [13C6]moricizine coeluted at 1.2 min, while [2H11]moricizine eluted slightly earlier. The MS system consisted of a Finnigan 4600 TSQ and a Vestec thermospray interface. Selected ions at m/z 428, 434, and 439 were scanned at 0.2 s per ion. Over a plasma concentration range of 10-800 ng/ml, intra-day precision (n = 3) ranged from 1.8 to 13.3% and intra-day accuracy ranged from 1.9 to 15.8%. This method was successfully used to assay human plasma samples from a pilot moricizine bioavailability study in which tablets and solution containing moricizine hydrochloride and [13C6]moricizine, respectively, were simultaneously administered.  相似文献   

12.
Chronic imbalance between production and degradation of the human amyloid-beta peptide (Abeta) is assumed to play an important role in pathogenesis of Alzheimer's disease (AD). Post-translational modifications of Abeta could influence its interactions with specifically cleaving proteases and, therefore, perturb the Abeta homeostasis. The angiotensin-converting enzyme (ACE) was previously shown to degrade non-modified Abeta in vitro and in cells. In the presented work, we investigated the effect of isomerization of Asp-7, a common non-enzymatic age-related modification found in AD-associated Abeta species, on hydrolysis of Abeta by ACE. Two synthetic peptides corresponding to the Abeta region 1-16 with either Asp or isoAsp residues in position 7 were examined as monomeric soluble substrates for the N- as well as for the C-domain of ACE. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) coupled with the (18)O-labeled internal standard approach has allowed us to show that (i) the N-domain of ACE (N-ACE), but not the C-domain, selectively cleaves the Arg-5-His-6 bond in both peptides, and that (ii) N-ACE hydrolyzes the isoAsp-7 analogue more efficiently than the non-modified one. Our results demonstrate a new endopeptidase activity of N-ACE as well as high preference of the domain to recognize and hydrolyze the isomerized Abeta species that were earlier suggested to promote AD pathogenesis. The results suggest the need for further analysis of biological effects of isomerized Abeta and its interaction with ACE in AD pathogenesis.  相似文献   

13.
Reactions of the tin precursors, R2Sn(OMe)OSO2Me (R=n-Pr, n-Bu), with an equimolar quantity of 2-quinoline/4-methoxy-2-quinoline/1-isoquinoline carboxylic acid in acetonitrile proceed under mild conditions (rt,12-15 h) via selective Sn-OMe bond cleavage to afford the corresponding mixed-ligand diorganotin derivatives [R2Sn(O2CR')OSO2Me]2 [R'=C9H6N-2, R=n-Pr (1), n-Bu (2); R'=4-OMe-C9H5N-2, R=n-Pr (3), n-Bu (4); R'=C9H6N-1, R=n-Pr (5), n-Bu (6)]. These have been characterized by FAB mass, IR, and multinuclear (1H, 13C, 119Sn) NMR spectral data and X-ray crystallography (for 4 and 6). The molecular structure of 4 (C20H29NO6SSn, monoclinic, P2(1)/n, a=14.1(13) A, b=16.7(18) A, c=20.3(19) A, beta=107(4) degrees, Z=8) comprises distorted octahedral geometry around each tin atom by virtue of weakly bridging methanesulfonate [Sn(1A)-O(3B)=3.010, Sn(1B)-O(3A)=2.984 A] and (N,O) chelation of the carboxylate ligands. The spectral data of 1-4 suggest a similar structural motif in solution. The molecular structure of 6 (C38H53N2O10S2Sn2, monoclinic, P2(1)/c, a=11.339(2) A, b=14.806(3) A, c=24.929(5) A, beta=100.537(3) degrees, Z=4) reveals varying bonding preferences with monomeric units being held together by a bridging methanesulfonate [Sn(2)-O(5)=2.312(2) A] and a carboxylate group bonded to Sn(1) and Sn(2) atoms, respectively. Slow hydrolysis of compound 2 derived from 2-quinoline carboxylic acid in moist CH3CN affords the asymmetric distannoxane, [Bu2Sn(O2CC9H6N-2)-O-Sn(OSO2Me)Bu2]2 (7) (C27H45NO6SSn2, monoclinic, C2/c, a=21.152(3) A, b=13.307(2) A, c=26.060(4) A, beta=110.02(10) degrees, Z=8) featuring ladder type structural motif by virtue of unique mu2-coordination of covalently bonded oxygen atoms [O(6), O(6)#1] of the methanesulfonate groups.  相似文献   

14.
Novel N-methoxymethylated (MOM) pyrimidine (4-13) and pyrimidine-2,4-diones (15-17) nucleoside mimetics in which an isobutyl side-chain is attached at the C-6 position of the pyrimidine moiety were synthesized. Synthetic methods via O-persilylated or N-anionic uracil derivatives have been evaluated for the synthesis of N-1- and/or N-3-MOM pyrimidine derivatives with C-6 acyclic side-chains. A synthetic approach using an activated N-anionic pyrimidine derivative afforded the desired N,N-1,3-diMOM and N-1-MOM pyrimidines 4 and 5 in good yield. Introduction of fluorine into the side-chain was performed with DAST as the fluorinating reagent to give a N,N-1,3-diMOM pyrimidine 13 with a 1-fluoro-3-hydroxyisobutyl moiety at C-6. Conformational study of the monotritylated N-1-MOM pyrimidine 12 by the use of the NOE experiments revealed the predominant conformation of the compound to be one where the hydroxymethyl group in the C-6 side-chain is close to the N-1-MOM moiety, while the OMTr is in proximity to the CH(3)-5 group. Contrary to this no NOE enhancements between the N-1-MOM group and hydroxymethyl or fluoromethyl protons in 13 were observed, which suggested a nonrestricted rotation along the C-6 side-chain. Fluorinated N,N-1,3-diMOM pyrimidine 13 emerged as a model compound for development of tracer molecules for non-invasive imaging of gene expression using positron emission tomography (PET).  相似文献   

15.
A series of novel d-glucose derivatives, functionalized at the C-2 or the C-6 position with an iminodiacetic acid moiety for transition-metal complexation, has been prepared. The sugar and the metal-chelating parts are separated by either propyl or octyl chains and were introduced by the reaction of bromoalkylamine. Either N-1-Boc-3-bromopropylamine (17) or N-(8-bromooctyl)phthalimide (19) reacted with methyl 3,5,6-tri-O-benzyl-alpha-beta-d-glucofuranoside (4) (C-2 position) and 1,2:3,5-(O-methylene)-alpha-d-glucose (11) (C-6 position), respectively, in the presence of sodium hydride in DMF at room temperature, affording the desired intermediates. For aminopropyl derivatives, yields varied between 57% and 65%, and for aminooctyl derivatives, yields varied between 40% and 71%. After deprotection of the amine functionality, the metal chelate was built up by dialkylation (6a-c and 13a,b) with methyl bromoacetate in the presence of triethylamine under reflux in THF. Yields varied between 56% and 69% for the glucose modified at the C-2 position and between 58% and 62% for the one modified at the C-6 position. All compounds were characterized by 1H or 13C NMR or both, IR, and mass spectroscopy. Final products were isolated as a mixture of alpha and beta anomers.  相似文献   

16.
The reactions of 2 equiv of the ligand precursor P(CH2NHPh)3 or P[CH2NH-3,5-(CF3)2C6H3]3 with 3 equiv of Mn[N(SiMe3)2]2 provide high-yielding routes to the triangular trinuclear Mn(II) complexes [P(CH2NPh)3]2Mn3(THF)3.1.5THF and [P(CH2N-3,5-(CF3)2C6H3)3]2Mn3(THF)3. The solid-state structures of these paramagnetic complexes have approximate C3 symmetry. The magnetic moments from 300 to 1.8 K could be fit as a magnetic Jahn-Teller distorted isosceles triangle. These complexes exhibit spin frustration and possess an S = 1/2 ground state, as revealed by a plot of magnetization versus field at 1.8 K; at fields above 3.8 T, the occupation of an excited state with S = 3/2 becomes significant. The diamagnetic magnesium analogues were prepared by the reaction of the ligand precursor P(CH2NHPh)3, P[CH2NH-3,5-(CF3)2C6H3]3, or P(CH2NH-3,5-Me2C6H3)3 with nBu2Mg. The solid-state structures of [P(CH2NPh)3]2Mg3(THF)3.1.5THF and [P(CH2N-3,5-(CF3)2C6H3)3]2Mg3(THF)3 were determined. Solution 1H NMR spectroscopy was used to demonstrate that the solid-state structures are maintained in solution. The aryl group of the terminal amido donor exhibits slow rotation on the NMR time scale, and this was found to be an electronic effect. Solution 31P{1H} NMR spectroscopy revealed an unexpected 15 Hz coupling between phosphorus nuclei in these complexes. Calculations on a model complex using density functional theory demonstrates that this coupling occurs via a combined through-space, through-bond pathway.  相似文献   

17.
Reaction of hexafluorocyclotriphosphazene (N3P3F6) with trimethyl(trifluoromethyl)silane in the presence of a catalytic amount of cesium fluoride in THF produced hexakis(trifluoromethyl)cyclotriphosphazene [N3P3(CF3)6] in 90% isolated yield. N3P3(CF3)6 is fully characterized by melting point, IR, NMR (19F, 13C, 31p), MS, and elemental analysis data. Single-crystal X-ray structures of N3P3(CF3)6 and N3P3F6 are reported.  相似文献   

18.
A sensitive and high‐throughput LC‐MS/MS method was established and validated for the simultaneous quantification of seven probe substrate‐derived metabolites (cocktail assay) for assessing the in vitro inhibition of cytochrome P450 (CYP) enzymes in pooled human liver microsomes. The metabolites acetaminophen (CYP1A2), hydroxy‐bupropion (CYP2B6), n‐desethyl‐amodiaquine (CYP2C8), 4′‐hydroxy‐diclofenac (CYP2C9), 4′‐hydroxy‐mephenytoin (CYP2C19), dextrorphan (CYP2D6) and 1′‐hydroxy‐midazolam (CYP3A4/5), together with the internal standard verapamil, were eluted on an Agilent 1200 series liquid chromatograph in <7 min. All metabolites were detected by an Agilent 6410B tandem mass spectrometer. The concentration of each probe substrate was selected by substrate inhibition assay that reduced potential substrate interactions. CYP inhibition of seven well‐known inhibitors was confirmed by comparing a single probe substrate assay with cocktail assay. The IC50 values of these inhibitors determined on this cocktail assay were highly correlated (R2 > 0.99 for each individual probe substrate) with those on single assay. The method was selective and showed good accuracy (85.89–113.35%) and between‐day (RSD <13.95%) and within‐day (RSD <9.90%) precision. The sample incubation extracts were stable at 25 °C for 48 h and after three freeze–thaw cycles. This seven‐CYP inhibition cocktail assay significantly increased the efficiency of accurately assessing compounds’ potential inhibition of the seven major CYPs in drug development settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The preparation of 4,4'-(1-[(2)H6]methylethylidene)bis-[2,3,5,6-(2)H4]phenol, bisphenol A-d14, was achieved in excellent yield by reaction of [2H6]acetone with [2H6]phenol in the presence of deuterium chloride. The product thus obtained was shown by mass spectroscopy to be a mixture of the 2H14, 2H13 and 2H12 isotopomers in the relative proportions of 82.3:16.2:1.5, respectively. An isotope dilution gas chromatography-mass spectrometric method using bisphenol A-d14 as an internal standard was developed to measure the level of bisphenol A in beverages. The procedure involves extracting bisphenol A into dichloromethane, and then purifying the analyte by back extraction into dilute aqueous sodium hydroxide. Conversion of bisphenol A and its internal standard, bisphenol A-d14, to their corresponding O-bis(trifluoroacetyl) derivatives by treatment with trifluoroacetic anhydride gave compounds with good chromatographic properties and whose mass fragmentometry is such that loss of M-CH3 and M-C2H3 are the base peaks in the mass spectra of the analyte and internal standard, respectively. Quantification of bisphenol A was achieved by comparing the area of the M-15 ion to that of the corresponding ion of bisphenol A-d14. The characteristics of our assay are: an analyte recovery of better than 95%, a root mean square signal-to-noise ratio of 79:1 for 1.7 pg on column and an inter-assay RSD of better than 4% (n=5).  相似文献   

20.
A series of four new potential renin inhibitors has been synthesized. The structure of the compounds was designed in such a way as to produce agents resistant to enzymatic degradation, metabolically stable, possibly potent and with improved oral absorption. All positions of the 8-13 fragment of the human angiotensinogen were occupied by unnatural units (two unnatural amino acids in positions P(3) and P(2) and two pseudodipeptides in positions P(1)-P(1') and P(2')-P(3')). Both N- and C-terminal functions of the inhibitors were blocked with tert-Boc and ethyl ester groups. Their hydrophobicity evaluated as a log P value, calculated by a computer method, was 6.57 and 6.08 respectively. All peptides were obtained by the carbodiimide method in solution and purified by chromatography on the SiO(2) column. Their resistance to enzymatic degradation was assayed by determination of stability against chymotrypsin activity. The potency was measured in vitro by a spectrofluorimetric method (assay of Leu-Val-Tyr-Ser released from the N-acetyltetradecapeptide substrate by renin in the presence of the inhibitor). All inhibitors were stable to chymotrypsin. Their IC(50) (M/l) values were: 9.6 x 10(-4) (12), 1.6 x 10(-5) (17), 1.0 x 10(-5) (22) and 1.0 x 10(-5) (23) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号