首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of online trace enrichment with custom-made coated capillaries combined with tandem mass spectrometry was demonstrated for the target analysis of selected pesticides (mainly herbicides, e.g., triazines, phenylureas, and acetanilides) in water. The developed method allows rapid determination of several widely used plant protectants within a total analysis time of 11 min. Good linearity (r > or = 0.995) was obtained for the selected pesticides in the range of 0.050-50 microg/L. The relative standard deviations (RSDs) of the peak areas were < or = 3.8% for spiked Milli-Q water (5 microg/L). The RSDs obtained in analyses of spiked (1 microg/L) water samples (brook water, river water, sewage plant effluent) ranged from 2.9 to 6.8%, indicating low influence of the matrix on enrichment and detection. The detection limits, which ranged from 10 to 90 ng/L, fulfilled the requirements of the European regulations for drinking water. The polyacrylate coating of the extraction capillary showed good stability in the presence of water and acetonitrile and allowed > or = 100 extractions with 1 capillary.  相似文献   

2.
A method for the quantitative determination of major antidepressants in aqueous matrices by CE using ESI-MS is presented. Several aqueous, nonaquoeus, and mixed aqueous/organic solvent BGEs including inorganic and organic acids were investigated with respect to their suitability for the separation of the selected analytes. Finally, due to the necessity to employ MS detection if the developed method should be suitable also for environmental samples, only MS-compatible electrolytes were taken into account. Based on this fact optimum results were obtained with a system consisting of 1.5 M formic acid and 50 mM ammonium formate in ACN/water (85/15). Linear calibration plots could be obtained for all solutes over a concentration range of almost two orders of magnitude, and the LODs achieved were in the range of 3-6 microg/L for trazodone and 39-43 microg/L for sertraline with the TOF instrument and the single quadrupole instrument in the SIM mode, respectively. This fact allowed the assumption that the presented method can be regarded as suitable for the determination of antidepressants even in the trace amounts commonly present in environmental samples. Spiking of river water and sewage plant effluent extracts with the selected solutes showed that no interferences from the matrix usually found in such samples can be expected. Finally the quantitative determination of the seven antidepressants in environmental samples was used to benchmark the performance of CZE coupled to a single quadrupole MS and a TOF-MS.  相似文献   

3.
An analytical method is presented which permits trace level determination of 17alpha-ethynylestradiol (EE2), 17beta-estradiol (E2), and estrone (E1). Using this method, the estrogenic steroids were analyzed in drinking water, surface water, and wastewater (sewage influents and effluents) at concentrations down to 0.1 ng/L. Sample volumes between 100 and 500 mL are concentrated using automated solid-phase extraction. Analysis is performed by liquid chromatography with detection by tandem mass spectrometry. Applying simple clean-up procedures and internal standard calibration, recovery losses resulting from matrix-dependent ion suppression during electrospray ionization could be compensated for all of the investigated compounds. Recoveries around 100% were obtained for all analytes after correction using the internal standards. Limits of quantification (LOQ) were between 0.1 and 0.4 ng/L for purified sewage, surface, ground, and drinking water and between 1 and 2 ng/L in the case of raw sewage. Water treatment by wastewater treatment plants (WWTPs) or by a surface water treatment plant affected the removal of all estrogenic steroids. Thus, E1, E2, and EE2 were removed in the municipal WWTPs to the extent of 93%, 93%, and 80%, respectively. In the effluents of the WWTP in Ruhleben (Berlin, Germany), E1, E2, and EE2 were detected at the low ng/L level. E2 and EE2 were, however, not present in the Berlin surface water above the LOQ (0.2 ng/L). E1 was the only compound that could be detected in surface water samples. After additional surface water treatment it was still detectable but only at trace-level concentrations with a mean value of 0.16 ng/L.  相似文献   

4.
An improved LC-electrospray ionization MS method was established for four estrogens (17beta-estradiol (E2), estriol (E3), estrone (E1), and ethynyl estradiol (EE)) in environmental water. Almost complete separation of all estrogens was achieved on a phenyl column with methanol/water as the mobile phase. Quantification was achieved in the negative ionization mode using selected ion monitoring. The instrumental detection limits were 20-30 ng/l for the four analytes. In Milli-Q spiked water, the recoveries of the four estrogens were 72-81%, which was similar to those found for river water spiked with the corresponding deuterated estrogens. The detection limits for the four estrogens in river water were 0.1-0.2 ng/l. The method was used to detect residual estrogens in the Tonghui River, which receives water from a municipal sewage treatment plant in Beijing; E1 (1.1 ng/l) and E2 (0.2 ng/l) were detected.  相似文献   

5.
Direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) has been tested for its suitability as a detector for gradient elution HPLC. Thereby a strong dependency of signal intensity on the amount of organic solvent present in the eluent could be observed. Adding a make-up liquid (iso-propanol) post-column to the HPLC effluent greatly enhanced detection limits for early eluting compounds. Limits of detection achieved employing this approach were in the range of 7-27 μg L(-1) for the parabene test mixture and 15-87 μg L(-1) for the pharmaceuticals. In further investigations DART ionization was compared to several other widely used atmospheric pressure ionization methods with respect to signal suppression phenomena occurring in when samples with problematic matrices are analyzed. For this purpose extracts from environmental and waste water samples were selected as model matrices which were subsequently spiked with a set of six substances commonly present in personal care products as well as six pharmaceuticals at concentration levels between 100 μg L(-1) and 500 μg L(-1) corresponding to 100 ng L(-1) and 500 ng L(-1) respectively in the original sample. With ionization suppression of less than 11% for most analytes investigated, DART ionization showed similar to even somewhat superior behavior compared to atmospheric pressure chemical ionization (APCI) and atmospheric pressure photo ionization (APPI) for the Danube river water extract; for the more challenging matrix of the sewage plant effluent extract DART provided better results with ion suppression being less than 11% for 9 out of 12 analytes while values for APCI were lying between 20% and >90%. Electrospray ionization (ESI) was much more affected by suppression effects than DART with values between 26% and 80% for Danube river water; in combination with the sewage plant effluent matrix suppression >50% was observed for all analytes.  相似文献   

6.
A method for the analysis of clotrimazole was developed with dispersive liquid–liquid microextraction for sample pre‐concentration and HPLC–MS/MS for analysis. A linear ion trap was used for the confirmation of clotrimazole identity in the samples. The developed method enables the analysis of clotrimazole in river water and sewage effluent from wastewater treatment plants with a LOQ of 0.7 ng/L. Environmental monitoring of clotrimazole was undertaken. Samples from river water and sewage effluents were analysed over a one‐year period. Clotrimazole was found in every tested sample with concentration range from 1 to 31 ng/L. The amount of clotrimazole in tested samples was highly dependent on sampling season. The highest results were obtained in summer and autumn.  相似文献   

7.
Liquid chromatography-atmospheric pressure ionization ion-trap mass spectrometry has been investigated for the analysis of polar pesticides in water. The degradation behavior of propoxur, selected as a model pesticide belonging to the N-methylcarbamate group, in various aqueous matrices (Milli-Q water, drinking water, rain water, seawater and river water) was investigated. Two interfaces of atmospheric pressure ionization, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), were compared during the study. Propoxur and its transformation product (N-methylformamide) were best ionized as positive ions with both APCI and ESI, while another transformation product (2-isopropoxyphenol) yielded stronger signals as negative ions only with APCI. In addition, the effects of various pH, matrix type and irradiation sources (sunlight, darkness, indoor lighting and artificial UV lamp) on the chemical degradation (hydrolysis) were also assessed. From the kinetic studies of degradation, it was found that the half-life of propoxur was reduced from 327 to 161 h in Milli-Q water with variation of irradiation conditions from dark to sunlight exposure. Degradation rates largely increased with increasing pH. The half-life of the target compound dissolved in Milli-Q water under darkness decreased from 407 to 3 h when the pH of Milli-Q water was increased from 5 to 8.5. These suggest that hydrolysis of propoxur is light-intensity and pH-dependent. In order to mimic contaminated natural environmental waters, propoxur was spiked into real water samples at 30 microg/l. The degradation of propoxur in such water samples under various conditions were studied in detail and compared. With the ion trap run in a time-scheduled single ion monitoring mode, typical limits of detection of the instrument were in the range of 1-10 microg/l.  相似文献   

8.
Pollutants such as human pharmaceuticals and synthetic hormones that are not covered by environmental legislation have increasingly become important emerging aquatic contaminants. This paper reports the development of a sensitive and selective multi-residue method for simultaneous determination and quantification of 23 pharmaceuticals and synthetic hormones from different therapeutic classes in water samples. Target pharmaceuticals include anti-diabetic, antihypertensive, hypolipidemic agents, β2-adrenergic receptor agonist, antihistamine, analgesic and sex hormones. The developed method is based on solid phase extraction (SPE) followed by instrumental analysis using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) with 30 min total run time. River water samples (150 mL) and (sewage treatment plant) STP effluents (100 mL) adjusted to pH 2, were loaded into MCX (3 cm3, 60 mg) cartridge and eluted with four different reagents for maximum recovery. Quantification was achieved by using eight isotopically labeled internal standards (I.S.) that effectively correct for losses during sample preparation and matrix effects during LC–ESI-MS/MS analysis. Good recoveries higher than 70% were obtained for most of target analytes in all matrices. Method detection limit (MDL) ranged from 0.2 to 281 ng/L. The developed method was applied to determine the levels of target analytes in various samples, including river water and STP effluents. Among the tested emerging pollutants, chlorothiazide was found at the highest level, with concentrations reaching up to 865 ng/L in STP effluent, and 182 ng/L in river water.  相似文献   

9.
A robust procedure for the determination of 16 US EPA PAHs in both aqueous (e.g. wastewaters, industrial discharges, treated effluents) and solid samples (e.g. suspended solids and sludge) from a wastewater treatment plant (WWTP) is presented. Recovery experiments using different percentages of organic modifier, sorbents and eluting solvent mixtures were carried out in Milli-Q water (1000 mL) spiked with a mixture of the PAH analytes (100 ng/L of each analyte). The solid phase extraction (SPE) procedures applied to spiked waste water samples (1000 mL; 100 ng/L spiking level) permitted simultaneous recovery of all the 16PAHs with yields >70% (6-13% RSD). SPE clean up procedures applied to sewage and stabilized sludge extracts, showed percent recoveries in the range 73-92% (7-13% RSD) and 71-89% (7-12% RSD), respectively. The methods were used for the determination of PAHs in aqueous and solid samples from the WWTP of Fusina (Venice, Italy). Mean concentrations, as the sum of the 16PAHs in aqueous and suspended solid samples, were found to be approx. in the 1.12-4.62 microg/L range. Sewage and stabilized sludge samples contained mean PAH concentrations, as sum of 16 compounds, in the concentration range of 1.44-1.26 mg/kg, respectively. Extraction and clean up procedures for sludge samples were validated using EPA certified reference material IRM-104 (CRM No. 912). Instrumental analyses were performed by coupling HPLC with UV-diode array detection (UV-DAD) and fluorescence detection (FLD).  相似文献   

10.
A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.  相似文献   

11.
This paper describes a method for determining 11 pharmaceuticals in various water sources by SPE followed by LC-(ESI) MS. SPE was carried out with Oasis HLB and the recoveries were 33-67% for 250 and 100 mL sewage water, 55-77% for 500 mL river water and 72-98% for 1 L tap water, with the exception of sulfamethoxazole and omeprazole which showed lower recoveries in all kinds of sample. The LODs in river water were of 5 ng/L for sulfadiazine, trimethoprim, sulfamethazine, sulfamethoxazole, and ranitidine and 10 ng/L for the other compounds. The highest concentrations found in river waters were for sulfamethoxazole (50 ng/L). In influent sewage waters, ranitidine was the most commonly detected compound with a maximum value of 0.24 microg/L.  相似文献   

12.
A method was developed to determine 11 pharmaceutical compounds in water samples. The method uses SPE and HPLC coupled to MS (LC/MS) using ESI in both positive and negative modes. Three different sorbents were compared for the extraction of analytes from river and sewage treatment plant (STP) waters and OASIS HLB provided the best results. For the solid-phase extraction of 500 mL of river water samples, the recoveries were between 41 and 101% with the exception of acetaminophen, salicylic acid and naproxen. The LODs were between 3 and 5 ng/L for all the compounds, except naproxen which had an LOD of 15 ng/L. Acetaminophen, caffeine, carbamazepine, bezafibrate and ibuprofen were found in three of the tested river samples at ng/L levels and among them, the highest values were for caffeine and bezafibrate with 305 and 363 ng/L, respectively. For the influent and effluent water samples of the STP, volumes of 100 and 250 mL were used, respectively, to obtain acceptable recoveries. All the compounds showed recoveries between 33 and 91% for effluent samples and 33-72% for influent samples, with the exception of acetaminophen, salicylic acid and bezafibrate, which had lower recoveries. The method developed enabled pharmaceuticals in the influent and effluent sewage waters to be determined in five campaigns carried out between February 2004 and June 2005. Several pharmaceuticals were found in the influent samples: for instance, maximum concentrations of ibuprofen and caffeine were 6 and 40 microg/L, respectively.  相似文献   

13.
A method is proposed for the determination of several phenolic xenoestrogens in aqueous and solid environmental samples. The method uses solid-phase extraction (preceded by ultrasonic solvent extraction for solid samples), reversed-phase liquid chromatographic separation, and mass spectrometric detection using both atmospheric pressure chemical ionization and electrospray ionization. This method was developed to support several studies undertaken to obtain aquatic and sedimentary data for rivers and seashores in Spain that are likely to be contaminated by endocrine-disrupting compounds (EDCs) as a consequence of wastewater discharge. Nonylphenol polyethoxylates (NPEOs), nonylphenoxy carboxylates (NPECs), nonylphenol (NP), octylphenol (OP), and bisphenol A (BPA) were determined in various samples of surface water and sediment, collected at different locations upstream and downstream from outfalls of municipal wastewater treatment plants (WWTPs). Seawater and marine sediments were collected in different harbor areas in Spain. Additionally, WWTP influent and effluents were analyzed to monitor the occurrence and transformation of phenolic EDCs during physicochemical and biological treatment. Rather high concentrations of the compounds investigated were found in some samples. Concentrations of NP were < or = 590 microg/kg in sediments and < or = 15 microg/L in water samples. NPEOs and NPECs were found in water samples in concentrations < or = 41 and < or = 35 microg/L, respectively. In solid samples (river sediment), concentrations of NPEO were < or = 818 microg/kg and those of NP1EC were 95 microg/kg.  相似文献   

14.
A sensitive liquid chromatography-electrospray tandem mass spectrometry method combined with solid-phase extraction and silica cartridge cleanup was established for 16 sulfonamides and trimethoprim in various water matrices. Signal suppression of all target analytes in sewage treatment plant influent, effluent and river water was improved by this method developed in this study. The method detection limits for 17 analytes were 20-200 pg/L for influent, 16-120 pg/L for effluent and 8.0-60 pg/L for river water with overall mean recoveries of 62-102% in all studied matrices. This method was used to analyze residual sulfonamides and trimethoprim in wastewater and river samples from Japan, and 8 analytes (0.08 (sulfadimethoxine)-161 ng/L (sulfapyridine) in wastewater and 10 (0.03 (sulfamethizol)-8.9 ng/L (sulfaquinoxaline) in river samples were detected.  相似文献   

15.
An analytical method has been developed which allows the determination of 22 different neutral and weakly basic drugs belonging to several different medicinal classes like antiphlogistics, betablockers, β2-sympathomimetics, lipid regulators, antiepileptic agents, psychiatric drugs and vasodilators in waste water as well as in river and drinking water. A method including solid phase extraction, derivatization by silylation and detection by GC/MS permits detection down to 5 ng/L. The recovery rates mostly exceeded 70%. However, the determination of phenazone, carbamazepine, cyclophosphamide, ifosfamide and pentoxiphylline is frequently disturbed by organic co-extractants in real samples of rivers and waste waters. Therefore, a time saving alternative method has been developed, combining solid phase extraction (as an enrichment step) together with detection by LC-electrospray/MS/MS allowing the measurement of 5 neutral drugs. Detection limits down to 10 ng/L have been achieved even for organically highly contaminated waters like sewage treatment plant effluents.  相似文献   

16.
Capillary electrophoresis with diode array detection and mass spectrometry combined with solid-phase extraction were employed for the identification of reactive vinylsulfone and chlorotriazine dyes and their hydrolysis products in spent dyebaths and raw and treated wastewater. Recoveries of dyes from treated wastewater as their tetrabutylammonium ion-pairs using C18 reversed-phase cartridges ranged from 81 to 121%. Detection limits in sewage effluent of the different dyes and hydrolysis products ranged from 23 to 42 microg/l. The method was successfully applied to the detection of the hydrolysis products of five reactive dyes in influents and effluents of a municipal wastewater treatment plant receiving dyehouse effluents.  相似文献   

17.
In this study, a method was developed for determination of the free concentration of 4-isobutylacetophenone, a toxic degradation product of ibuprofen, in river and sewage water samples from Sweden. Sample preparation and analysis were performed by a hollow-fibre microporous membrane liquid-liquid extraction (HF-MMLLE) set-up and gas chromatography-mass spectrometry (GC-MS), respectively. In this novel approach, only the liquid in the membrane pores is utilised for non-depleting extraction. Several parameters were studied, including: type of organic solvent, sample pH, and salt and humic acid content. The optimised method allowed the determination of the analyte at the ng L(-1) level in river and sewage water. A linear plot gave a correlation coefficient better than 0.992 and resulted in a limit of detection of 7 and 14 ng L(-1) for river and sewage water, respectively. The enrichment factor was over 2000 in the fibre and over 300 after dilution. The repeatability and reproducibility were better than 5% and 10%, respectively. For the first time, 4-isobutylacetophenone was found at free concentrations of 40 ng L(-1) or below in sewage waters, while it could not be quantified in a river downstream from a municipal sewage treatment plant.  相似文献   

18.
An analytical method has been developed which allows the determination of 22 different neutral and weakly basic drugs belonging to several different medicinal classes like antiphlogistics, betablockers, β2-sympathomimetics, lipid regulators, antiepileptic agents, psychiatric drugs and vasodilators in waste water as well as in river and drinking water. A method including solid phase extraction, derivatization by silylation and detection by GC/MS permits detection down to 5 ng/L. The recovery rates mostly exceeded 70%. However, the determination of phenazone, carbamazepine, cyclophosphamide, ifosfamide and pentoxiphylline is frequently disturbed by organic co-extractants in real samples of rivers and waste waters. Therefore, a time saving alternative method has been developed, combining solid phase extraction (as an enrichment step) together with detection by LC-electrospray/MS/MS allowing the measurement of 5 neutral drugs. Detection limits down to 10 ng/L have been achieved even for organically highly contaminated waters like sewage treatment plant effluents. Received: 18 November 1997 / Revised: 18 March 1998 / Accepted: 21 March 1998  相似文献   

19.
An HPLC method using C18-modified silica as stationary phase has been developed for environmental trace analysis of nine (fluoro)quinolones. Detection is done by fluorescence measurement or MS using the modes of SIM and selected reaction monitoring (SRM). Best separation is achieved with a gradient consisting of 50 mM formic acid and methanol, which is fully compatible with MS coupling. LOQs (S/N of 10) for fluorescence detection are between 10 and 60 microg/L, depending on the analyte. MS detection (SIM and SRM) yields LOQs that are better by a factor of at least an order of magnitude. Sample preconcentration and sample clean-up is accomplished by SPE (preconcentration factor of 1000), leading to LOQs in the low ng/L range. Recoveries of the preconcentration procedure are better than 80% for all analytes. The suitability for real samples has been demonstrated by analyzing surface waters, municipal waste waters, sewage treatment plant effluents, sewage sludge, and sediment taken from rivers and fish ponds. The method should also be useful for determination of residues of (fluoro)quinolones in food or other matrices. The degradation of the (fluoro)quinolones has been examined over 5 days in order to get information about the decomposition rate and the degradation products eventually occurring in the environment.  相似文献   

20.
An analytical method for the determination of the major endogenous and exogenous estrogenic steriods in effluent water samples of sewage treatment plants (STPs) with a LOQ down to 1 ng/L and below has been developed. The exogenous estrogen 17alpha-ethynylestradiol, frequently used as estrogenic component in oral contraceptives, and the endogenous estrogen 17beta-estradiol show the highest estrogenic potential, therefore they were part of our target compounds. In addition, the content of the synthetic gestagen levonorgestrel, also often administered in oral contraceptives, was determined. A solid-phase extraction system for high volume sampling of water up to 25 L was implemented. Two types of adsorbent, Amberlite XAD 2 and a mixture of LiChrolut EN/Bondesil C-18, respectively, were tested for their extraction efficiency of these polar analytes. Recovery rates with LiChrolut EN/Bondesil C-18 ranged up to 94%, whereas sampling on XAD 2 led only to poor recoveries below 40%. After a liquid chromatographic clean-up step on silicagel the steroids were converted into their trimethylsilyl-ethers by the reaction with MSTFA/TMSI (N-methyl-N-trimethylsilyl-2,2,2-trifluoroacetamide, trimethylsilyliodide) and were then determined by HRGC/MS in the selected ion mode. A limit of quantification over the whole procedure of at least 1 ng/L was reached for all analytes. In several effluent samples the input of estrogens by the STP of the cities Ulm and New Ulm into the river Danube was characterised. The concentrations commonly found ranged from 1 ng/L up to 13 ng/L, depending on the respective steroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号