首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phase-field model that takes into account the bending energy of fluid vesicles is presented. The Canham-Helfrich model is derived in the sharp-interface limit. A dynamic equation for the phase-field has been solved numerically to find stationary shapes of vesicles with different topologies and the dynamic evolution towards them. The results are in agreement with those found by minimization of the Canham-Helfrich free energy. This fact shows that our phase-field model could be applied to more complex problems of instabilities.  相似文献   

2.
Using both theoretical modeling and computer simulations we study a model system for DNA interactions in the vicinity of charged membranes. We focus on the polarization of the mobile charges in the membranes due to the nearby charged rods (DNA) and the resulting screening of their fields and inter-rod interactions. We find, both within a Debye-Hückel model and in Brownian dynamics simulations, that the confinement of the mobile charges to the surface leads to a qualitative reduction in their ability to screen the charged rods to the degree that the fields and resulting interactions are not finite-ranged as in systems including a bulk salt concentration, but rather decay algebraically and the screening effect is more like an effective increase in the multipole moment of the charged rod. Received 28 September 1999  相似文献   

3.
We present a study of the fractal dimension of clusters of large unilamellar vesicles (LUVs) formed by egg yolk phosphatidylcholine (EYPC), dimyristoylphosphocholine (DMPC) and dipalmitoylphosphocholine (DPPC) induced by Ca2+ . Fractal dimensions were calculated by application of two methods, measuring the angular dependency of the light scattered by the clusters and following the evolution of the cluster size. In all cases, the fractal dimensions fell in the range from 2.1 to 1.8, corresponding to two regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA). Whereas DMPC clusters showed a typical transition from the RLCA to the DLCA aggregation, EYPC exhibited an unusual behaviour, since the aggregation was limited for a higher concentration than the critical aggregation concentration. The behaviour of DPPC was intermediate, with a transition from the RLCA to the DLCA regimes with cluster sizes depending on Ca2+ concentration. Studies on the reversibility of the aggregates show that EYPC and DPPC clusters can be re-dispersed by dilution with water. DMPC does not present reversibility. Reversibility is evidence of the existence of secondary minima in the DLVO potential between two liposomes. To predict these secondary minima, a correction of the DLVO model was necessary taking into account a repulsive force of hydration.  相似文献   

4.
The behavior of two membranes that interact by active adhesion molecules or stickers is studied theoretically using mean-field theory and Monte Carlo simulations. The stickers are anchored in one of the membranes and undergo conformational transitions between on and off states. In their on states, the stickers can bind to ligands that are anchored in the other membrane. The transitions between the on and off states arise from the coupling of the stickers to some active, energy-releasing process, which keeps the system out of equilibrium. As one varies the transition rates of this active process, the membrane separation undergoes a stochastic resonance: this separation is maximal at intermediate rates of the sticker transitions and considerably smaller both at high and at low transition rates. This implies that the effective, fluctuation-induced repulsion between the membranes contains a rate-dependent contribution that arises from the switching of the active stickers.  相似文献   

5.
The influence of cholesterol on the structure of unilamellar-vesicle (ULV) phospholipid bilayers is studied using small-angle neutron scattering. ULVs made up of short-, mid- and long-chain monounsaturated phospholipids (diCn :1PC, n = 14 , 18, 22, respectively) are examined over a range (0-45mol %) of cholesterol concentrations. Cholesterol's effect on bilayer structure is characterized through changes to the lipid's transmembrane thickness, lateral area and headgroup hydration. For all three lipids, analysis of the experimental data shows that the addition of cholesterol results in a monotonic increase of these parameters. In the case of the short- and mid-chain lipids, this is an expected result, however, such a finding was unexpected for the long-chain lipid. This implies that cholesterol has a pronounced effect on the lipid's hydrocarbon chain organization.  相似文献   

6.
The density of the elastic energy of a deformed membrane in a liquid state is calculated. The thermodynamic equilibrium of its different parts is taken into account. The shape equation of a closed membrane is deduced. The quantity which keeps its value, when the variations of the energy of the system are calculated, is not the area of the deformed membrane, but its area in the flat tension free state. Because of this, additional terms appear in the second variation around the stable state. The case of a lipid bilayer and its fluctuations is examined for both free and blocked exchange of molecules between the monolayers, comprising the bilayer. Received 4 February 2002 / Received in final form 15 April 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: bivas@issp.bas.bg  相似文献   

7.
Conditions for self-reproduction are sought for a growing vesicle with its growth defined by an exponential increase of vesicle membrane area and by adequate flow of the solution across the membrane. In the first step of the presumed vesicle self-reproduction process, the initially spherical vesicle must double its volume in the doubling time of the membrane area and, through the appropriate shape transformations, attain the shape of two equal spheres connected by an infinitesimally thin neck. The second step involves separation of the two spheres and relies on conditions that cause the neck to be broken. In this paper we consider the first step of this self-reproduction process for a vesicle suspended in a solution whose solute can permeate the vesicle membrane. It is shown that vesicle self-reproduction occurs only for certain combinations of the values of membrane hydraulic and solute permeabilities and the external solute concentration, these quantities being related to the mechanical properties of the membrane and the membrane area doubling time. The analysis includes also the relaxation of a perturbed system towards stationary self-reproduction behavior and the case where the final shape consists of two connected spheres of different radii.  相似文献   

8.
Highly oriented solid-supported lipid membranes in stacks of controlled number N ≃ 16 (oligo-membranes) have been prepared by spin-coating using the uncharged lipid model system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The samples have been immersed in aqueous polymer solutions for control of osmotic pressure and have been studied by X-ray reflectivity. The bilayer structure and fluctuations have been determined by modelling the data over the full q-range. Thermal fluctuations are described using the continuous smectic Hamiltonian with the appropriate boundary conditions at the substrate and at the free surface of the stack. The resulting fluctuation amplitudes and the pressure-distance relation are discussed in view of the inter-bilayer potential.  相似文献   

9.
Fluctuation spectra of fluid compound membrane systems are calculated. The systems addressed contain two (or more) almost parallel membranes that are connected by harmonic tethers or by a continuous, harmonic confining potential. Additionally, such a compound system can be attached to a supporting substrate. We compare quasi-analytical results for tethers with analytical results for corresponding continuous models and investigate under what circumstances the discrete nature of the tethers actually influences the fluctuations. A tethered, supported membrane pair with similar bending rigidities and stiff tethers can possess a nonmonotonic fluctuation spectrum with a maximum. A nonmonotonic spectrum with a maximum and a minimum can occur for an either free or supported membrane pair of rather different bending rigidities and for stiff tethers. Typical membrane displacements are calculated for supported membrane pairs with discrete or continuous interacting potentials. Thereby an estimate of how close the constituent two membranes and the substrate typically approach each other is given. For a supported membrane pair with discrete or continuous interactions, the typical displacements of each membrane are altered with respect to a single supported membrane, where those of the membrane near the substrate are diminished and those of the membrane further away are enhanced.  相似文献   

10.
11.
We present here a neutron reflectivity study of the influence of an alternative electric field on a supported phospholipid double bilayer. We report for the first time a reproducible increase of the fluctuation amplitude leading to the complete unbinding of the floating bilayer. Results are in good agreement with a semi-quantitative interpretation in terms of negative electrostatic surface tension.  相似文献   

12.
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain γ , which strongly attracts this membrane. If the vesicle is larger than the attractive γ domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the γ domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular γ domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular γ domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.  相似文献   

13.
14.
A simple 2D model of deformable vesicles tumbling in a shear under flow is introduced in order to account for the main qualitative features observed experimentally as shear rates are increased. The simplicity of the model allows for a full analytical tractability while retaining the essential physical ingredients. The model reveals that the main axes of the vesicle undergo oscillations which are coupled to the vesicle orientation in the flow. The model reproduces and sheds light on the main novel features reported in recent experiments [M. Mader et al., Eur. Phys. J. E. 19, 389 (2006)], namely that both coefficients A and B that enter the Keller-Skalak equation, dψ/dt = A+Bcos(2 ψ) (ψ is the vesicle orientation angle in the shear flow), undergo a collapse upon increasing shear rate.  相似文献   

15.
The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.  相似文献   

16.
17.
Inside biological membranes, one of the fundamental functions of active proteins such as pumps is to generate some electrochemical gradient across the membrane and then, to establish a new stationary state. The membrane electric potential generated by activity modifies the stiffness constants of the membrane. A spontaneous curvature appears if the inner and outer Debye lengths are different. The corresponding characteristic radius falls in the range from 0.08μm to 50μm. The bending elastic modulus is always increased. This effect is only noticeable in the limit of large Debye length from 0.5μm to 0.09μm. For a Nernst potential of 100mV and a Debye length of 0.2μ m, the bending modulus can reach 40kBT. An erratum to this article is available at .  相似文献   

18.
We examine the equilibria of a rigid loop in the plane, characterized by an energy functional quadratic in the curvature, subject to the constraints of fixed length and fixed enclosed area. Whereas the only non self-intersecting equilibrium corresponding to the fixed length constraint is the circle, the area constraint gives rise to distinct equilibria labeled by an integer. These configurations exhibit self-intersections and bifurcations as the area is reduced. In addition, not only can the Euler-Lagrange equation be integrated to provide a quadrature for the curvature but the embedding itself can be expressed as a local function of the curvature. Perturbations connecting equilibria are shown to satisfy a first order ODE which is readily solved. Analytical expressions for the energy as a function of the area are obtained in the limiting regimes. Received 18 October 2001 / Received in final form 31 May 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: capo@fis.cinvestav.mx RID="b" ID="b"e-mail: chryss@nuclecu.unam.mx RID="c" ID="c"e-mail: jemal@nuclecu.unam.mx  相似文献   

19.
The effect of rigid inclusions on the phase behavior of a film containing a mixture of lipid molecules is investigated. In the proposed model, the inclusion-induced deformation of the film, and the resulting energy cost are strongly dependent upon the spontaneous curvature of the mixed film. The spontaneous curvature is in turn strongly influenced by the composition of film. This coupling between the film composition and the energy per inclusion leads to a lateral modulation of the composition, which follows the local curvature of the membrane. In particular, it is shown that inclusions may induce a global phase separation in a film which would otherwise be homogeneously mixed. The mixed film is then composed of patches of different average composition, separated by the inclusions. This process may be of relevance to explain some aspects of lipid-protein association in biological membranes. Received 8 April 1999 and Received in final form 4 October 1999  相似文献   

20.
Thin multilamellar assemblies of neutral lipid bilayers deposited on silicon substrates are shown to be unstable upon hydration. We analyze the stability of these systems taking into account a reduction of the fluctuation-related components of the bilayer interaction potential. The sizes of the patterns observed are consistent with a spinodal dewetting process. Received 27 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号