首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
纳米银胶体(AgNPs)长期储存不稳定性问题是本研究的中心,着重考察了不同前驱体对纳米银胶体的稳定性影响。分别以银氨([Ag(NH3)2]OH)溶液和Ag NO3溶液为前驱体制备了多份纳米银胶体样品并通过UV-Vis、FE-SEM、EDS、ZETA电位仪等现代分析测试手段研究了纳米银胶的形貌、粒径大小以及稳定性。对比分析发现,以[Ag(NH3)2]OH溶液为前驱体,制备的纳米银胶体具有粒径可控,尺寸均一,分散性良好等特点;而且经过一个月的常温储存,表现出比用Ag NO3溶液为前驱体制备的纳米银胶体具有更高的储存稳定性。  相似文献   

2.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

3.
通过简便的蒸发方法得到了2种碱金属磺酸盐非线性光学(NLO)晶体,即Li(NH2SO3)和Na(NH2SO3)。Li(NH2SO3)以极性空间群Pca21(编号29)结晶。Li(NH2SO3)的结构可以描述为由[LiO4]7-多面体通过共角连接与NH2SO3-四面体相互连接而形成的三维网络。Na(NH2SO3)以极性空间群 P212121(编号 19)结晶。Na(NH2SO3)的结构可以描述为由扭曲的[NaO6]11-八面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。紫外可见近红外光谱表明,Li(NH2SO3)和 Na(NH2SO3)分别具有 5.25 和 4.81eV 的大光学带隙。粉末二次谐波发生(SHG)测量显示,Li(NH2SO3)和 Na(NH2SO3)的 SHG 强度分别为 KH2PO4的 0.32 倍和 0.31倍。第一原理计算证实,非线性光学性能主要来自氨基磺酸阴离子和碱金属氧阴离子多面体的协同作用。  相似文献   

4.
采用原位溶剂热法合成了2种混合有机阳离子杂化甲酸盐(CH(NH2)2)[RE (HCOO)4](RE=Y、Er)。这2种材料是同构的(手性空间群C2221),并具有有趣的类钙钛矿结构。进行了包括线性和非线性光学特性在内的光物理研究。(CH(NH2)2)[Y(HCOO)4]和(CH(NH2)2)[Er(HCOO)4]分别表现出5.59和5.61 eV的宽光学带隙,对应于222和221 nm的紫外吸收边缘。粉末倍频测量表明,(CH(NH2)2)[Y(HCOO)4]和(CH(NH2)2)[Er(HCOO)4]的倍频效应分别是基准KH2PO4(KDP)的0.32和0.37倍。测量得到(CH(NH2)2)[Y(HCOO)4]和(CH(NH2)2)[Er(HCOO)4]的双折射率分别为0.013和0.015。第一性原理研究表明,2个π共轭的(CH(NH2)2)+和HCOO-基团是光学性质的主要贡献者。  相似文献   

5.
通过简便的蒸发方法得到了 2种碱金属磺酸盐非线性光学(NLO)晶体, 即 Li(NH2SO3)和 Na(NH2SO3)。Li(NH2SO3)以极性空间群Pca21(编号 29)结晶。Li(NH2SO3)的结构可以描述为由[LiO4]7-多面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。Na(NH2SO3)以极性空间群 P212121(编号 19)结晶。Na(NH2SO3)的结构可以描述为由扭曲的[NaO6]11-八面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。紫外可见近红外光谱表明, Li(NH2SO3)和 Na(NH2SO3)分别具有 5.25 和 4.81 eV 的大光学带隙。粉末二次谐波发生(SHG)测量显示, Li(NH2SO3)和 Na(NH2SO3)的 SHG 强度分别为 KH2PO4的 0.32 倍和 0.31倍。第一原理计算证实, 非线性光学性能主要来自氨基磺酸阴离子和碱金属氧阴离子多面体的协同作用。  相似文献   

6.
采用原位溶剂热法合成了2种混合有机阳离子杂化甲酸盐(CH (NH2)2)[RE (HCOO)4](RE=Y、Er)。这2种材料是同构的(手性空间群C2221),并具有有趣的类钙钛矿结构。进行了包括线性和非线性光学特性在内的光物理研究。(CH (NH2)2)[Y (HCOO)4]和(CH (NH2)2)[Er (HCOO)4]分别表现出5.59和5.61 eV的宽光学带隙,对应于222和221 nm的紫外吸收边缘。粉末倍频测量表明,(CH (NH2)2)[Y (HCOO)4]和(CH (NH2)2)[Er (HCOO)4]的倍频效应分别是基准KH2PO4(KDP)的0.32和0.37倍。测量得到(CH (NH2)2)[Y (HCOO)4]和(CH (NH2)2)[Er (HCOO)4]的双折射率分别为0.013和0.015。第一性原理研究表明,2个π共轭的(CH (NH2)2)+和HCOO-基团是光学性质的主要贡献者。  相似文献   

7.
王辉  张慧  王爱琴  张涛 《催化学报》2010,31(9):1172-1176
 以间苯二酚和甲醛为炭源, F127 (EO106PO70EO106) 为结构导向剂, 在酸性水/乙醇溶液中引入 (NH4)6Mo7O24•4H2O 或 (NH4)2WO4 溶液, 经静置自组装形成凝胶, 再于 N2 中焙烧即合成出金属碳化物修饰的有序介孔炭材料. 结果表明, 金属离子的种类和用量对碳化物的分散度和介孔炭的有序度影响很大. 通过控制金属离子的用量可制备出粒径为 3~5 nm 且高度分散在介孔炭骨架中的碳化物粒子. 与分步浸渍法相比, 一步法制备的碳化物具有更高的分散度和催化肼分解活性.  相似文献   

8.
本研究工作报道了一例采用溶液挥发法合成的稀土金属甲酸盐,分子式为(C(NH2)3)[Er(HCOO)4]。该化合物结晶于非中心对称空间群。光学性质研究表明:该化合物具有较大光学带隙(4.76 eV)、适中的双折射率(0.066@546 nm);在1 064 nm处,其粉末倍频效应为KH2PO4(KDP)的0.2倍,并且可实现相位匹配。第一性原理计算和单晶结构分析揭示了线性和非线性光学效应来源于C (NH2)3+、[ErO8]和HCOO-单元的协同作用。  相似文献   

9.
采用水热法制备单分散、粒径均一的碱式碳酸钇(Y(OH)CO3)前驱体,经过高温煅烧处理得到氧化钇(Y2O3)空心纳米花。通过傅里叶转换红外分析(FT-IR),场发射扫描电子显微镜(FESEM),透射电子显微镜(TEM),X射线衍射(XRD),X射线能谱(XPS)以及N2吸-脱附等来表征样品,并研究了Y2O3空心纳米花吸附重铬酸钾(K2Cr2O7)的能力。实验结果表明:水热法制备的前驱体为Y(OH)CO3,经高温煅烧处理得到立方相Y2O3空心纳米花,尺寸约140 nm,比表面积为15 m2·g-1,讨论了Y2O3空心纳米花的形成机理。水热法制备的Y2O3空心纳米花对K2Cr2O7溶液的去除率可高达88.5%,吸附量为11.06 mg·g-1,约为Y2O3粉末的6倍。  相似文献   

10.
通过水热合成得到一个新的有机二膦酸亚铁化合物[NH3(CH2)5NH3][Fe2{O3PC(CH3)(OH)(PO3H)}2]·2H2O,该化合物包含阴离子型共价双链[Fe2{O3PC(CH相似文献   

11.
Stable nanoparticle colloids of silver were obtained by irradiation of aqueous-alcoholic solutions of AgNO3 in the presence of mesoporous SiO2 powder and films modified with benzophenone (BP/SiO2). Colloidal solutions of Ludox silica were used to stabilize the photochemically produced nanoparticles of silver in solution. Formation of nanoparticles of Ag on the surface of mesoporous silica occurred on irradiation of SiO2 modified with silver ions (Ag+/SiO2) in the presence of benzophenone solution.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 100–104, March–April, 2005.  相似文献   

12.
佟浩  王春明 《中国化学》2006,24(4):457-462
A method of electroless silver deposition on silver activated p-type silicon(111) wafer was proposed. The silver seed layer was deposited firstly on the wafer in the solution of 0.005 mol/L AgNO3 +0.06 mol/L HE Then the silver film was electrolessly deposited on the seed layer in the electroless bath of AgNO3+NH3+acetic acid+NH2NH2 (pH 10.2). The morphology of the seed layer and the silver films prepared under the condition of the different bath composition was compared by atomic force microscopy. The reflectance of the silver films with different thickness was characterized by Fourier transform infrared spectrometry. The experimental results indicate that the seed layer possesses excellent catalytic activity toward electroless silver deposition and rotating of the silicon wafer during the electroless silver deposition could lead to formation of the smoother silver film.  相似文献   

13.
The biomass of Aeromonas SH10 was proven to strongly absorb Ag+ and [Ag(NH3)2]+. The maximum uptake of [Ag(NH3)2]+ was 0.23 g(Ag) g−1(cell dry weight), higher than that of Ag+. Fourier transform infrared spectroscopy spectra analysis indicated that some organic groups, such as amide and ionized carboxyl in the cell wall, played an important role in the process of biosorption. After SH10 cells were suspended in the aqueous solution of [Ag(NH3)2]+ under 60°C for more than 12 h, [Ag(NH3)2]+ was reduced to Ag(0), which was demonstrated by the characteristic absorbance peak of elemental silver nanoparticle in UV-VIS spectrum. Scanning electron microscopy and transmission electron microscopy observation showed that nanoparticles were formed on the cell wall after reduction. These particles were then confirmed to be elemental silver crystal by energy dispersive X-ray spectroscopy, X-ray diffraction, and UV-VIS analysis. This study demonstrated the potential use of Aeromonas SH10 in silver-containing wastewater treatment due to its high silver biosorption ability, and the potential application of bioreduction of [Ag(NH3)2]+ in nanoparticle preparation technology.  相似文献   

14.
In this work, the comparison of the physical properties of silver nanoparticles (AgNPs) obtained via the reduction of silver nitrate (AgNO3) in biological and chemical (model) syntheses supplemented with the biosurfactant surfactin is described. In the studies, two strains of Bacillus subtilis (denoted T’1 and I’1a) were used. The biological synthesis of AgNPs was performed using supernatants obtained from cultures of bacteria growing on brewery effluents, molasses, and Luria–Bretani (LB) medium. In model experiments, ascorbic acid served as the reductant; surfactin acted as the stabilizing agent. The surfactin concentrations were adjusted to 5 and 30?mg/L, which corresponded to minimum and maximum surfactin concentrations as measured in the supernatants obtained from the B. subtilis cultures. The chemical synthesis was carried out at acidic as well as alkaline pH. Dynamic light scattering (DLS) revealed that in model and biological samples, single AgNPs were accompanied by aggregated structures. Transmission electron microscopy showed that the contribution of the aggregates in bacterial supernatants and in chemical synthesis is negligible under acidic conditions. However, in the alkaline environment, this contribution predominates. In the model experiments, smaller nanoparticles were formed with higher concentrations of surfactant. The presence of surfactin significantly increased the stability of AgNPs in both bio- and chemical syntheses.  相似文献   

15.
A simple, eco-friendly, cost-effective and rapid microwave-assisted method has been developed to synthetize dendritic silver nanostructures, composed of silver nanoparticles (AgNPs), using white grape pomace aqueous extract (WGPE) as both reducing and capping agent. With this aim, WGPE and AgNO3 (1 mM) were mixed at different ratio, and microwave irradiated at 700 W, for 40 s. To understand the role of bioactive compounds involved in the green synthesis of AgNPs, preliminary chemical characterization, FT-IR analysis and 1H NMR metabolite profiling of WGPE were carried out. The effects of bioactive extract concentration and stability over time on AgNPs formation were also evaluated. WGPE-mediated silver nanostructures were then characterized by UV–vis, FTIR analyses, and scanning electron microscopy. Interestingly, the formation of dendritic nanostructures, originated from the self-assembly of Ag rounded nanoparticles (average diameter of 33 ± 6 nm), was observed and ascribed to the use of microwave power and the presence of organic components within the used WGPE, inducing an anisotropic crystal growth and promoting a diffusion-limited aggregation mechanism. The bio-dendritic synthetized nanostructures were also evaluated for potential applications in bio-sensing and agricultural fields. Cyclic voltammetry measurements in 0.5 M phosphate + 0.1 M KCl buffer, pH 7.4 showed that green AgNPs possess the electroactive properties typical of AgNPs produced using chemical protocol. The biological activity of synthetized AgNPs was evaluated by in-vitro antifungal activity against F. graminearum. Additionally, a phytotoxicity evaluation of synthetized green nanostructures was carried out on wheat seed germination. Results highlighted the potential of WGPE as green agent for bio-inspired nanomaterial synthesis, and of green Ag nanostructures, which can be used as antifungal agent and in biosensing applications.  相似文献   

16.
Silver nanoparticles were synthesized by UV irradiation of [Ag(NH3)2]+ aqueous solution using poly(N-vinyl-2-pyrrolidone) (PVP) as both reducing and stabilizing agents. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima around 420 nm. It was found that the formation rate of silver nanoparticles from Ag2O was much quicker than that from AgNO3, and the absorption intensity increased with PVP concentration as well as irradiation time. The maximum absorption wavelength (λmax) was blue shift with increasing PVP content until 8 times concentration of [Ag(NH3)2]+ (wt%). The transmission electron microscopy (TEM) showed the resultant particles were 4–6 nm in size, monodisperse and uniform particle size distribution. X-ray diffraction (XRD) demonstrated that the colloidal nanoparticles were the pure silver. In addition, the silver nanoparticles prepared by the method were stable in aqueous solution over a period of 6 months at room temperature (25 °C).  相似文献   

17.
Two sol-gel fabrication processes were investigated to make silica spheres containing Ag nanoparticles: (1) a modified Stöber method for silica spheres below 1 m size, and (2) a SiO2-film formation method on spheres of 3–;7 m size. The spheres were designed to incorporate silver nanoparticles of high (3) in a spherical optical cavity structure for the resonance effect. For the incorporation, interaction between [Ag(NH3)2]+ ion and Si-OH was important. In the Stöber method, the size of the silica spheres was determined by a charge balance of plus and minus ions on the silica surface. In the film formation method, the capture of Ag complex ion on the silica surface depended on whether the surface was covered with OH groups or not. After doping [Ag(NH3)2]+ into silica particles or SiO2 films on the spheres, these ions w ere reduced by NaBH4 to form silver nanoparticles. From plasma absorption at around 420 nm wavelength and TEM photographs of nanometer-sized silver particles, their formation inside the spherical cavity structures was confirmed.  相似文献   

18.
Sequential formation of silver nanoparticles (AgNPs) and nanorods from the reduction of AgNO3 was affected by a poly(oxyethylene)-amidoacid (POE-amidoacid) in aqueous solution. The requisite POE-amidoacid, consisting of –(CH2CH2O)n– segments with amide and carboxyl groups, was simply prepared via amidation with trimellitic anhydride of a poly(oxyethylene)-monoamine (POE-amine) of molecular weight (Mw) ∼2000 g/mol. The POE-amidoacid afforded AgNPs as small as 5 nm in diameter, which gradually (over a period of months) self-assembled into nanorods that were 10–15 nm in width and 30–50 nm in length. The hierarchical formation of Ag species occurred only at ambient temperature, but Ag aggregates formed above 50 °C. The process could be monitored by UV absorption at 420 and 380 nm for AgNPs and nanorods, respectively, and by transmission electron microscopy (TEM) for the nanorods. Fourier transform infrared (FTIR) and tapping-mode atomic force microscopy (TM-AFM) analyses revealed that the structurally tailored POE-amidoacid was indeed multifunctional: it reduced Ag+, stabilized the obtained Ag0 species, and served as a template for the tandem formation of AgNPs and nanorods.  相似文献   

19.
This paper presents studies on paramagnetic intermediates, free atoms and radicals produced in γ-irradiated molecular sieves and their reactions with adsorbate molecules or exchangeable cations. Four different systems have been investigated using EPR spectroscopy, Na-A/CH4, AgNa-A/CH3OH, Ag-SAPO-11/C2H4 and AgCs-rho/NH3. It was found that methyl radicals are formed in two different sites in Na-A/CH4 and in one of them they are stable at room temperature. The formation of Ag·CH2OH+ radical cation with one-electron bond between silver and carbon has been established in AgNa-A/CH3OH by EPR experiments with [13C]CH3OH and DFT calculations. In Ag-SAPO-11/C2H4 the stabilisation of biligand silver/ethylene complex, Ag0(C2H4)2 was postulated based on EPR and DFT results. Tetrameric silver clusters (Ag 4 3+ ) produced radiolytically in AgCs-rho/NH3 strongly interact with two ammonia molecules as was deduced from the changes in superhyperfine structure of high-field EPR line of Ag 4 3+ pentet for zeolite exposed to [14N]NH3 and [15N]NH3. The presented examples clearly show that the combination of radiation methods with EPR technique is very useful to study the structure and reactivity of paramagnetic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号