首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

2.
3.
4.
5.
The heterometallic complex [TiCp*(O(2)Bz)(2)AlMe(2)] (2) has been synthesised by reaction of [TiCp*(O(2)Bz)(OBzOH)] (1) with AlMe(3) (Cp*=eta(5)-C(5)Me(5); Bz=benzyl). Complex 1 reacts with HOTf to yield the cationic derivative [TiCp*(OBzOH)(2)]OTf (3) (HOTf=HSO(3)CF(3)). Compound 3 reacts with [{M(mu-OH)(cod)}(2)] (M=Rh, Ir; cod=cyclooctadiene) to render the early-late heterometallic complexes [TiCp*(O(2)Bz)(2){M(cod)}(2)]OTf (M=Rh (4); Ir (5)). The molecular structure of complex 4 has been established by single-crystal X-ray diffraction studies.  相似文献   

6.
7.
Permutational isomers of trigonal bipyramidal [W2RhIr2(CO)9(η5‐C5H5)2(η5‐C5HMe4)] result from competitive capping of either a W2Ir or a WIr2 face of the tetrahedral cluster [W2Ir2(CO)10(η5‐C5H5)2] from its reaction with [Rh(CO)25‐C5HMe4)]. The permutational isomers slowly interconvert in solution by a cluster metal vertex exchange that is proposed to proceed by Rh?Ir and Rh?W bond cleavage and reformation, and via the intermediacy of an edge‐bridged tetrahedral transition state. The permutational isomers display differing chemical and physical properties: replacement of CO by PPh3 occurs at one permutational isomer only, while the isomers display distinct optical power limiting behavior.  相似文献   

8.
9.
We report on novel sandwichlike structures [Al(4)MAl(4)](q-) (q=0-2 and M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) based on the recently synthesized all-metal aromatic Al(4)(2-) square ring. The sandwichlike structures have two aromatic tetraaluminum square rings which trap a transition-metal cation from either the first, second, or third row. The stability of the anionic sandwichlike complexes towards electron detachment is discussed, and addition of alkali cations is found to stabilize the 2- charged complexes, preventing spontaneous electron detachment. Once the sandwichlike complexes are formed, the Al(4)(2-) square properties remain nearly unchanged; this fact strongly supports the hypothesis that in these complexes the Al(4)(2-) square rings remain aromatic.  相似文献   

10.
Jacobsen H  Cavallo L 《Chemphyschem》2012,13(2):562-569
The performance of a series of density functionals when tested on the prediction of the phosphane substitution energy of transition metal complexes is evaluated. The complexes Fe-BDA and Ru-COD (BDA=benzylideneacetone, COD=cyclooctadiene) serve as reference systems, and calculated values are compared with the experimental values in THF as obtained from calorimetry. Results clearly indicate that functionals specifically developed to include dispersion interactions usually outperform other functionals when BDA or COD substitution is considered. However, when phosphanes of different sizes are compared, functionals including dispersion interactions, at odd with experimental evidence, predict that larger phosphanes bind more strongly than smaller phosphanes, while functionals not including dispersion interaction reproduce the experimental trends with reasonable accuracy. In case of the DFT-D functionals, inclusion of a cut-off distance on the dispersive term resolves this issue, and results in a rather robust behavior whatever ligand substitution reaction is considered.  相似文献   

11.
Two manganese(II) isocyanate complexes with different flexible zwitterionic dicarboxylate ligands, [Mn(2)(bcpp)(NCO)(4)](n) (1; bcpp=1,3-bis(N-carboxylatomethyl-4-pyridinio)propane) and [Mn(2)(bcp)(NCO)(4)](n) (2; bcp=bis(N-carboxylatomethyl)-4,4'-bipyridinium, have been synthesized and characterized by X-ray crystallography and magnetic measurements. Both compounds consist of two-dimensional coordination layers in which uniform anionic chains with mixed (NCO)(2)(COO) triple bridges are cross-linked by flexible cationic 4,4'-trimethylenedipyridinium spacers. Magnetic studies revealed antiferromagnetic interactions through the triple bridges (J=-8.0 cm(-1) (1) and J=-8.6 cm(-1) (2)), which are stronger than those in the isoelectronic analogue (N(3))(2)(COO). To complement the experimental data, periodic and finite-cluster DFT and CASPT2 calculations were performed on the dimeric units of the (NCO)(2)(COO) and (N(3))(2)(COO) mixed-bridged systems to support the Heisenberg picture and stress the relative efficiency of the magnetic couplers. It was found that the isocyanate ligand plays a greater role in the conveyance of antiferromagnetic behavior than the azide counterpart, and that both pseudohalide bridges function cooperatively with the carboxylate group.  相似文献   

12.
The geometric and electronic structure of formally d(6) tris-biphosphinine [M(bp)(3)](q) and tris-bipyridine [M(bpy)(3)](q) complexes were studied by means of DFT calculations with the B3LYP functional. In agreement with the available experimental data, Group 4 dianionic [M(bp)(3)](2-) complexes (1P-3P for M=Ti, Zr, and Hf, respectively) adopt a trigonal-prismatic (TP) structure, whereas the geometry of their nitrogen analogues [M(bpy)(3)](2-) (1N-3N) is nearly octahedral (OC), although a secondary minimum was found for the TP structures (1N'-3N'). The electronic factors at work in these systems are discussed by means of an MO analysis of the minima, MO correlation diagrams, and thermodynamic cycles connecting the octahedral and trigonal-prismatic limits. In all these complexes, pronounced electron transfer from the metal center to the lowest lying pi* ligand orbitals makes the d(6) electron count purely formal. However, it is shown that the bp and bpy ligands accommodate the release of electron density from the metal in different ways because of a change in the localization of the HOMO, which is a mainly metal-centered orbital in bp complexes and a pure pi* ligand orbital in bpy complexes. The energetic evolution of the HOMO allows a simple rationalization of the progressive change from the TP to the OC structure on successive oxidation of the [Zr(bp)(3)](2-) complex, a trend in agreement with the experimental structure of the monoanionic complex. The geometry of Group 6 neutral complexes [M(bp)(3)] (4P and 5P for M=Mo and W, respectively) is found to be intermediate between the TP and OC limits, as previously shown experimentally for the tungsten complex. The electron transfer from the metal center to the lowest lying pi* ligand orbitals is found to be significantly smaller than for the Group 4 dianionic analogues. The geometrical change between [Zr(bp)(3)](2-) and [W(bp)(3)] is analyzed by means of a thermodynamic cycle and it is shown that a larger ligand-ligand repulsion plays an important role in favoring the distortion of the tungsten complex away from the TP structure.  相似文献   

13.
14.
15.
Fe? W heterometallic complexes, in which an FeX2 (X=Cl, SPh) moiety is attached to monodithiolene oxotungsten through a sulfide bridge, that is, [Ph4P]2[Cl2Fe(S)2WOS2] ( 1 ), [Ph4P]2[Cl2Fe(S)2WOS2(DMED)] ( 2 , DMED=dimethylethylenedicarboxylate), [Ph4P]2[Cl2Fe(S)2WO(tdt)] ( 3 , tdt=toluenedithiolate), [Ph4P]2[(SPh)2Fe(S)2WO(tdt)] ( 4 ), and [Ph4P]2[Cl2Fe(S)2WO(edt)] ( 5 , edt=ethanedithiolate), are reported. Mössbauer and EPR spectroscopy, magnetism, electrochemistry, and electronic structural analysis based on DFT and TD‐DFT calculations show the transfer of electron from the iron center to the tungsten center, thus resulting in a ferromagnetically coupled FeIIIWV unit, along with antiferromagnetic intermolecular interactions, from the starting FeII and WVI compounds. A net spin of a S=3 ground state, which arises from ferromagnetically coupled FeIII and WV atoms, displays a rare X‐band EPR in normal mode at g≈7 in the solid state.  相似文献   

16.
17.
A theoretical study on two series of electron‐rich group 8 hydrides is carried out to evaluate involvement of the transition metal in dihydrogen bonding. To this end, the structural and electronic parameters are computed at the DFT/B3PW91 level for hydrogen‐bonded adducts of [(PP3)MH2] and [Cp*MH(dppe)] (M=Fe, Ru, Os; PP34‐P(CH2CH2PPh2)3, dppe= κ2‐Ph2PCH2CH2PPh2) with CF3CH2OH (TFE) as proton donor. The results are compared with those of adduct [Cp2NbH3] ? TFE featuring a “pure” dihydrogen bond, and classical hydrogen bonds in pyridine ? TFE and Me3N ? TFE. Deviation of the H ??? H? A fragment from linearity is shown to originate from the metal participation in dihydrogen bonding. The latter is confirmed by the electronic parameters obtained by NBO and AIM analysis. Considered together, orbital interaction energies and hydrogen bond ellipticity are salient indicators of this effect and allow the MH ??? HA interaction to be described as a bifurcate hydrogen bond. The impact of the M ??? HA interaction is shown to increase on descending the group, and this explains the experimental trends in mechanisms of proton‐transfer reactions via MH ??? HA intermediates. Strengthening of the M ??? H interaction in the case of electron‐rich 5d metal hydrides leads to direct proton transfer to the metal atom.  相似文献   

18.
19.
The X-ray crystal structures, magnetic susceptibilities from 2 to 300 K, and theoretical analyses of the magnetism for 1D and trinuclear azido Cu(II) carboxylate complexes [Cu(1.5)(hnta)(N(3))(2)(H(2)O)](n) (1) and [Cu(3)(hnta)(4)(N(3))(2)(H(2)O)(3)] (2), respectively, where hnta is 6-hydroxynicotinate, are described. Although both exhibit strong ferromagnetic coupling, discrete complex 2 exhibits long-range ferromagnetic ordering, while the very similar 1D system 1 does not. Density functional calculations provided accurate J values and allowed rationalization of the ferromagnetic coupling in terms of the magnetic orbitals and spin densities.  相似文献   

20.
Zero-point vibrational corrections are computed at the BP86/AE1 level for the set of 50 transition-metal/ligand bonds that have recently been proposed as testing ground for DFT methods, because of the availability of precise experimental gas-phase geometries (Bühl and Kabrede, J Chem Theory Comput 2006, 2, 1282). These corrections are indicated to be transferable to a large extent between various density-functional/basis-set combinations, so that they can be used to estimate zero-point averaged r0g distances from re values optimized at other theoretical levels. Applying this approach to a number of popular DFT levels does not, in general, improve their overall accuracy in terms of mean and standard deviations from experiment. The hybrid variant of the meta-functional TPSS is confirmed as promising choice for computing structures of transition-metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号