共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of some studies on the development and application of a finite element method (FEM) with a closed-form solution technique for time discretization. The closed-form solution is based on the eigenvalues/vectors of a coefficient matrix. The method is first applied to the one-dimensional linearized shallow water equations and then extended to the two-dimensional shallow water equations. An attempt is made to improve its efficiency by incorporating time splitting and using the closed-form solution technique only for linear terms. Some case studies of a rectangular channel and harbour are presented to illustrate the satisfactory working of the method. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 953–963, 1997. 相似文献
2.
Peter Mewis 《国际流体数值方法杂志》2013,72(8):864-882
Within the mixed FEM, the mini‐element that uses a bubble shape function for the solution of the shallow water wave equations on triangle meshes is simplified to a sparse element formulation. The new formulation has linear shape functions for water levels and constant shape functions for velocities inside each element. The suppression of decoupled spurious solutions is excellent with the new scheme. The linear dispersion relation of the new element has similar advantages as that of the wave equation scheme (generalised wave continuity scheme) proposed by Lynch and Gray. It is shown that the relation is monotonic over all wave numbers. In this paper, the time stepping scheme is included in the dispersion analysis. In case of a combined space–time staggering, the dispersion relation can be improved for the shortest waves. The sparse element is applied in the flow model Bubble that conserves mass exactly. At the same time, because of the limited number of degrees of freedom, the computational efficiency is high. The scheme is not restricted to orthogonal triangular meshes. Three test cases demonstrate the very good accuracy of the proposed scheme. The examples are the classical quarter annulus test case for the linearised shallow water equations, the hydraulic jump and the tide in the Elbe river mouth. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
A numerical method based on the MacCormack finite difference scheme is presented. The method was developed for simulating two‐dimensional overland flow with spatially variable infiltration and microtopography using the hydrodynamic flow equations. The basic MacCormack scheme is enhanced by using the method of fractional steps to simplify application; treating the friction slope, a stiff source term, point‐implicitly, plus, for numerical oscillation control and stability, upwinding the convective acceleration term. A higher‐order smoothing operator is added to aid oscillation control when simulating flow over highly variable surfaces. Infiltration is simulated with the Green–Ampt model coupled to the surface water component in a manner that allows dynamic interaction. The developed method will also be useful for simulating irrigation, tidal flat and wetland circulation, and floods. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
4.
This paper introduces a sparse matrix discrete interpolation method to effectively compute matrix approximations in the reduced order modeling framework. The sparse algorithm developed herein relies on the discrete empirical interpolation method and uses only samples of the nonzero entries of the matrix series. The proposed approach can approximate very large matrices, unlike the current matrix discrete empirical interpolation method, which is limited by its large computational memory requirements. The empirical interpolation indices obtained by the sparse algorithm slightly differ from the ones computed by the matrix discrete empirical interpolation method as a consequence of the singular vectors round‐off errors introduced by the economy or full singular value decomposition (SVD) algorithms when applied to the full matrix snapshots. When appropriately padded with zeros, the economy SVD factorization of the nonzero elements of the snapshots matrix is a valid economy SVD for the full snapshots matrix. Numerical experiments are performed with the 1D Burgers and 2D shallow water equations test problems where the quadratic reduced nonlinearities are computed via tensorial calculus. The sparse matrix approximation strategy is compared against five existing methods for computing reduced Jacobians: (i) matrix discrete empirical interpolation method, (ii) discrete empirical interpolation method, (iii) tensorial calculus, (iv) full Jacobian projection onto the reduced basis subspace, and (v) directional derivatives of the model along the reduced basis functions. The sparse matrix method outperforms all other algorithms. The use of traditional matrix discrete empirical interpolation method is not possible for very large dimensions because of its excessive memory requirements. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
Vincenzo Casulli 《国际流体数值方法杂志》2009,60(4):391-408
A new wetting and drying algorithm for numerical modeling free‐surface flows is proposed and analyzed. A well structured, mildly nonlinear system for the discrete water surface elevation is derived from the governing differential equations by requiring a correct mass balance in wet areas as well as in the region of transition from wet to dry and from dry to wet. Existence and uniqueness of the numerical solution, along with a convergence analysis of an iterative scheme for the mildly nonlinear system, is provided. The present algorithm is devised to use high‐resolution bathymetric data at subgrid level. The resulting model is quite efficient, does not require a threshold value for minimal water depth, does not produce un‐physical negative water depths and generates accurate results with relatively coarse mesh and large time step size. These features are illustrated on a severe test‐case with known analytical solution. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
In this paper, a semi‐implicit numerical model for two‐ and three‐dimensional free‐surface flows will be formulated in such a fashion as to intrinsically account for subgrid bathymetric details. It will be shown that with the proposed subgrid approach the model accuracy can be substantially improved without increasing the corresponding computational effort. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
An accurate, efficient and robust numerical method for the solution of the section‐averaged De St. Venant equations of open channel flow is presented and discussed. The method consists in a semi‐implicit, finite‐volume discretization of the continuity equation capable to deal with arbitrary cross‐section geometry and in a semi‐implicit, finite‐difference discretization of the momentum equation. By using a proper semi‐Lagrangian discretization of the momentum equation, a highly efficient scheme that is particularly suitable for subcritical regimes is derived. Accurate solutions are obtained in all regimes, except in presence of strong unsteady shocks as in dam‐break cases. By using a suitable upwind, Eulerian discretization of the same equation, instead, a scheme capable of describing accurately also unsteady shocks can be obtained, although this scheme requires to comply with a more restrictive stability condition. The formulation of the two approaches allows a unified implementation and an easy switch between the two. The code is verified in a wide range of idealized test cases, highlighting its accuracy and efficiency characteristics, especially for long time range simulations of subcritical river flow. Finally, a model validation on field data is presented, concerning simulations of a flooding event of the Adige river. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
A semi‐implicit finite difference model based on the three‐dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi‐implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
9.
A high-order immersed boundary method is devised for the compressible Navier-Stokes equations by employing high-order summation-by-parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high-order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross-section of a human upper airway is simulated. 相似文献
10.
M. F. Carfora 《国际流体数值方法杂志》2000,34(6):527-558
A semi‐implicit, semi‐Lagrangian, mixed finite difference–finite volume model for the shallow water equations on a rotating sphere is introduced and discussed. Its main features are the vectorial treatment of the momentum equation and the finite volume approach for the continuity equation. Pressure and Coriolis terms in the momentum equation and velocity in the continuity equation are treated semi‐implicitly. Moreover, a splitting technique is introduced to preserve symmetry of the numerical scheme. An alternative asymmetric scheme (without splitting) is also introduced and the efficiency of both is discussed. The model is shown to be conservative in geopotential height and unconditionally stable for 0.5≤θ≤1. Numerical experiments on two standard test problems confirm the performance of the model. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
11.
The accuracy and efficiency of two methods of resolving the exact potential flow problem for nonlinear waves are compared using three different one horizontal dimension (1DH) test cases. The two model approaches use high‐order finite difference schemes in the horizontal dimension and differ in the resolution of the vertical dimension. The first model uses high‐order finite difference schemes also in the vertical, while the second model applies a spectral approach. The convergence, accuracy, and efficiency of the two models are demonstrated as a function of the temporal, horizontal, and vertical resolutions for the following: (1) the propagation of regular nonlinear waves in a periodic domain; (2) the motion of nonlinear standing waves in a domain with fully reflective boundaries; and (3) the propagation and shoaling of a train of waves on a slope. The spectral model approach converges more rapidly as a function of the vertical resolution. In addition, with equivalent vertical resolution, the spectral model approach shows enhanced accuracy and efficiency in the parameter range used for practical model applications. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
The present paper makes use of a wave equation formulation of the primitive shallow water equations to simulate one-dimensional free surface flow. A numerical formulation of the boundary element method is then developed to solve the wave continuity equation using a time-dependent fundamental solution, while an explicit finite difference scheme is used to derive velocities from the primitive momentum equation. One-dimensional free surface flows in open channels are treated and the results compared with analytical and numerical solutions. © 1997 John Wiley & Sons, Ltd. 相似文献
13.
For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi‐coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single‐phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids (Annu. Rev. Fluid Mech. 2005; 37 :239–261) is extended to curvilinear grids, where no‐slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single‐phase solver (Comput. Fluids 2007; 36 :1415–1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure–velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single‐phase method, thus avoiding ill‐conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single‐phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two‐phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
The representation of geometries as buildings, flood barriers or dikes in free surface flow models implies tedious and time‐consuming operations in order to define accurately the shape of these objects when using a body fitted numerical mesh. The immersed boundary method is an alternative way to define solid bodies inside the computational domain without the need of fitting the mesh boundaries to the shape of the object. In the direct forcing immersed boundary method, a solid body is represented by a grid of Lagrangian markers, which define its shape and which are independent from the fluid Eulerian mesh. This paper presents a new implementation of the immersed boundary method in an unstructured finite volume solver for the 2D shallow water equations. Moving least‐squares is used to transmit information between the grid of Lagrangian markers and the fluid Eulerian mesh. The performance of the proposed implementation is analysed in three test cases involving different flow conditions: the flow around a spur dike, a dam break flow with an isolated obstacle and the flow around an array of obstacles. A very good agreement between the classic body fitted approach and the immersed boundary method was found. The differences between the results obtained with both methods are less relevant than the errors because of the intrinsic shallow water assumptions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
Zhaowei Liu Yongcan Chen Heming Hu Dejun Zhu 《International Journal of Computational Fluid Dynamics》2013,27(1):59-68
A non-horizontal multi-layer element model is developed for the simulation for the flow in natural rivers. Either Cartesian coordinates or sigma coordinates will experience difficulties in dealing with the water surface and irregular bed topography of natural rivers. To create the surface-fitting and non-deformed cells, the newly developed model divides the water column into several layers with non-horizontal interfaces which are nearly parallel to the water surface. The irregular bed topography is also represented by the layered integration between non-horizontal interfaces. Two case studies for the flow in a straight channel and the flow in an S-shaped meander channel are conducted with good agreement between the numerical predictions and the analytical or experimental results. The model is further applied for the investigation of the flow in a 12-km-long and 3.46-m-drop reach of the Yangtze River with the water surface evaluation and the stream-wise velocity satisfactory accordance with the observed data. 相似文献
16.
为探索鱼类在群聚游动中水动力相互作用以及游动性能的影响,采用基于虚拟单元的锐利界面浸没边界法对双鱼以不同横向间距、纵向间距和尾摆相位差游动的问题进行了数值研究,并对双鱼的水动力性能和流场进行了综合分析。研究结果表明,在适当的位置和相应的尾摆相位差下,跟随鱼的游动性能可以得到显著的提高,同时影响领头鱼的游动性能。本文建议横向间距的最佳选择不应小于0.3倍体长。此外,通过考虑流场压力来探究双鱼间的水动力相互作用机制,发现双鱼间推力的产生同时受贴体压力和尾流动力的影响。分析表明,这两种影响的主导地位会随着双鱼间的位置变化而改变,当流向间距小于0.4倍的体长时,由贴体压力主导,当流向间距大于0.4倍的体长时,则改为由尾流动力所主导。这项研究可以为生物的集群游动力学机理提供一些见解,并支撑仿生潜航器的研制。 相似文献
17.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
18.
New test cases for frictionless, three‐dimensional hydrostatic flows have been derived from some known analytical solutions of the two‐dimensional shallow water equations. The flow domain is a paraboloid of revolution and the flow is determined by the initial conditions, the nonlinear advective terms, the Coriolis acceleration and by the hydrostatic pressure. Wetting and drying is also included. Some specific properties of the exact solutions are discussed under different hypothesis and relative importance of the forcing terms. These solutions are proposed for testing the stability, the accuracy and the efficiency of numerical models to be used for simulating environmental hydrostatic flows. The computed solutions obtained with a semi‐implicit finite difference—finite volume algorithm on unstructured grid are compared with the corresponding analytical solutions in both two and three space dimension. Excellent agreement are obtained for the velocity and for the resulting water surface elevation. Comparison of the computed inundation area also shows a good agreement with the analytical solution with degrading accuracy observed when the inundation area becomes relatively large and for long simulation time. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
19.
We consider a family of steady free‐surface flow problems in two dimensions, concentrating on the effect of nonlinearity on the train of gravity waves that appear downstream of a disturbance. By exploiting standard complex variable techniques, these problems are formulated in terms of a coupled system of Bernoulli equation and an integral equation. When applying a numerical collocation scheme, the Jacobian for the system is dense, as the integral equation forces each of the algebraic equations to depend on each of the unknowns. We present here a strategy for overcoming this challenge, which leads to a numerical scheme that is much more efficient than what is normally used for these types of problems, allowing for many more grid points over the free surface. In particular, we provide a simple recipe for constructing a sparse approximation to the Jacobian that is used as a preconditioner in a Jacobian‐free Newton‐Krylov method for solving the nonlinear system. We use this approach to compute numerical results for a variety of prototype problems including flows past pressure distributions, a surface‐piercing object and bottom topographies. 相似文献
20.
An implicit, spectral algorithm for the analysis of unsteady flow problems governed by the Laplace operator in corrugated geometries is described. The algorithm treats the physical boundary conditions as constraints along lines internal to the solution domain. The method eliminates the need for coordinate generation and can be quickly adapted to changing geometries. Various tests confirm the spectral accuracy in space and the first‐ and second‐order accuracies in time. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献