首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2‐D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm's law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper we demonstrate that some well‐known finite‐difference schemes can be interpreted within the framework of the local discontinuous Galerkin (LDG) methods using the low‐order piecewise solenoidal discrete spaces introduced in (SIAM J. Numer. Anal. 1990; 27 (6): 1466–1485). In particular, it appears that it is possible to derive the well‐known MAC scheme using a first‐order Nédélec approximation on rectangular cells. It has been recently interpreted within the framework of the Raviart–Thomas approximation by Kanschat (Int. J. Numer. Meth. Fluids 2007; published online). The two approximations are algebraically equivalent to the MAC scheme, however, they have to be applied on grids that are staggered on a distance h/2 in each direction. This paper also demonstrates that both discretizations allow for the construction of a divergence‐free basis, which yields a linear system with a ‘biharmonic’ conditioning. Both this paper and Kanschat (Int. J. Numer. Meth. Fluids 2007; published online) demonstrate that the LDG framework can be used to generalize some popular finite‐difference schemes to grids that are not parallel to the coordinate axes or that are unstructured. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Methods based on exponential finite difference approximations of h4 accuracy are developed to solve one and two‐dimensional convection–diffusion type differential equations with constant and variable convection coefficients. In the one‐dimensional case, the numerical scheme developed uses three points. For the two‐dimensional case, even though nine points are used, the successive line overrelaxation approach with alternating direction implicit procedure enables us to deal with tri‐diagonal systems. The methods are applied on a number of linear and non‐linear problems, mostly with large first derivative terms, in particular, fluid flow problems with boundary layers. Better accuracy is obtained in all the problems, compared with the available results in the literature. Application of an exponential scheme with a non‐uniform mesh is also illustrated. The h4 accuracy of the schemes is also computationally demonstrated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, high‐order compact finite difference calculations are reported for 2D unsteady incompressible circular vortex flow in primitive variable formulation. The fourth‐order Runge–Kutta temporal discretization is used together with fourth‐ or tenth‐order compact spatial discretization. Dependent on the perturbation initially imposed, the solutions display a tripole, triangular or square vortex. The comparison of the predictions with the detailed spectral calculations of Kloosterziel and Carnevale (J. Fluid Mech. 1999; 388 :217–257) shows that the vorticity fields are very well captured. The spectral resolution of the present method was quantified from the decomposition of the vorticity distribution in its azimuthal components and compared with reported spectral results. Using identical grid resolution to the reference results yields negligible differences in the main features of the flow. The perturbation amplitude and its first harmonic are virtually identical to the reference results for both fourth‐ or tenth‐order spatial discretization, as theoretically expected but seldom a posteriori verified. The differences between the two spatial discretizations appear only for coarser grids, favouring the tenth‐order discretization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a numerical simulation of steady two‐dimensional channel flow with a partially compliant wall. Navier–Stokes equation is solved using an unstructured finite volume method (FVM). The deformation of the compliant wall is determined by solving a membrane equation using finite difference method (FDM). The membrane equation and Navier–Stokes equation are coupled iteratively to determine the shape of the membrane and the flow field. A spring analogy smoothing technique is applied to the deformed mesh to ensure good mesh quality throughout the computing procedure. Numerical results obtained in the present simulation match well with that in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
An algorithm for a time accurate incompressible Navier–Stokes solver on an unstructured grid is presented. The algorithm uses a second order, three‐point, backward difference formula for the physical time marching. For each time step, a divergence free flow field is obtained based on an artificial compressibility method. An implicit method with a local time step is used to accelerate the convergence for the pseudotime iteration. To validate the code, an unsteady laminar flow over a circular cylinder at a Reynolds number of 200 is calculated. The results are compared with available experimental and numerical data and good agreements are achieved. Using the developed unsteady code, an interaction of a Karman vortex street with an elliptical leading edge is simulated. The incident Karman vortex street is generated by a circular cylinder located upstream. A clustering to the path of the vortices is achieved easily due to flexibility of an unstructured grid. Details of the interaction mechanism are analysed by investigating evolutions of vortices. Characteristics of the interactions are compared for large‐ and small‐scale vortex streets. Different patterns of the interaction are observed for those two vortex streets and the observation is in agreement with experiment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
A new finite difference method for the discretization of the incompressible Navier–Stokes equations is presented. The scheme is constructed on a staggered‐mesh grid system. The convection terms are discretized with a fifth‐order‐accurate upwind compact difference approximation, the viscous terms are discretized with a sixth‐order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth‐order difference approximation on a cell‐centered mesh. Time advancement uses a three‐stage Runge–Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

12.
A fourth‐order compact finite difference scheme on the nine‐point 2D stencil is formulated for solving the steady‐state Navier–Stokes/Boussinesq equations for two‐dimensional, incompressible fluid flow and heat transfer using the stream function–vorticity formulation. The main feature of the new fourth‐order compact scheme is that it allows point‐successive overrelaxation (SOR) or point‐successive underrelaxation iteration for all Rayleigh numbers Ra of physical interest and all Prandtl numbers Pr attempted. Numerical solutions are obtained for the model problem of natural convection in a square cavity with benchmark solutions and compared with some of the accurate results available in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its performance. This method is capable of dealing with all the instabilities that the standard Galerkin method presents, namely the pressure instability, the instability arising in convection‐dominated situations and the less popular instabilities found when the Navier–Stokes equations have a dominant Coriolis force or when there is a dominant absorption term arising from the small permeability of the medium where the flow takes place. The second objective is to describe a nodal‐based implementation of the finite element formulation introduced. This implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements, thus making the calculations much faster. In order to be able to do this, all the variables have to be defined at the nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of the formulation. However, doing this gives rise to questions regarding the consistency and the conservation properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Third‐order and fifth‐order upwind compact finite difference schemes based on flux‐difference splitting are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux‐difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the present upwind compact schemes, the split derivatives for the convective terms at grid points are linked to the differences of split fluxes between neighboring grid points, and these differences are computed by using FDS. The viscous terms are approximated with a sixth‐order central compact scheme. Comparisons with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and high‐order accurate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A class of higher order compact (HOC) schemes has been developed with weighted time discretization for the two‐dimensional unsteady convection–diffusion equation with variable convection coefficients. The schemes are second or lower order accurate in time depending on the choice of the weighted average parameter μ and fourth order accurate in space. For 0.5?μ?1, the schemes are unconditionally stable. Unlike usual HOC schemes, these schemes are capable of using a grid aspect ratio other than unity. They efficiently capture both transient and steady solutions of linear and nonlinear convection–diffusion equations with Dirichlet as well as Neumann boundary condition. They are applied to one linear convection–diffusion problem and three flows of varying complexities governed by the two‐dimensional incompressible Navier–Stokes equations. Results obtained are in excellent agreement with analytical and established numerical results. Overall the schemes are found to be robust, efficient and accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
19.
This paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional‐step Adams–Bashford methods are compared with an implicit three‐level method based on a steady‐state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co‐located finite‐volume technique. The influence of the convergence limits and the time‐step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex‐shedding flow over a cylinder in the Reynolds number range of 100–1600. A high‐Reynolds‐number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low‐Reynolds‐number range the explicit methods appear to be faster by a factor from 5 to 10. In the high‐Reynolds‐number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we introduce and test the enhanced stability recovery (ESR) scheme. It is a robust and compact approach to the computation of diffusive fluxes in the framework of discontinuous Galerkin methods. The scheme is characterized by a new recovery basis and a new procedure for the weak imposition of Dirichlet boundary conditions. These features make the method flexible and robust, even in the presence of highly distorted meshes. The implementation is simplified with respect to the original recovery scheme (RDG1x). Furthermore, thanks to the proposed approach, a robust implementation of p‐adaptive algorithms is possible. Numerical tests on unstructured grids show a convergence rate equal to p + 1, where p is the reconstruction order. Comparisons are shown with the original recovery scheme RDG1x and the widely used BR2 method. Results show a significantly larger stability region for the proposed discretization when explicit Runge–Kutta time integration is employed. Interestingly, this advantage grows quickly when the reconstruction order is increased. The proposed procedure for the weak imposition of Dirichlet boundary conditions does not need the introduction of ghost cells, and it is truly local because it does not require data exchange with other elements. It can be easily used with curvilinear wall elements. Several test cases are considered. They include some benchmark tests with the heat equation and compressible Navier–Stokes equations, with test cases designed also to evaluate the behaviour of the scheme with very stretched elements and separated flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号