首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A refined r‐factor algorithm for implementing total variation diminishing (TVD) schemes on arbitrary unstructured meshes, referred to henceforth as a face‐perpendicular far‐upwind interpolation scheme for arbitrary meshes (FFISAM), is proposed based on an extensive review of the existing r‐factor algorithms available in the literature. The design principles, as well as the respective advantages and disadvantages, of the existing algorithms are first systematically analyzed before presenting the FFISAM. The FFISAM is designed to combine the merits of various existing r‐factor algorithms. The performance of the FFISAM, implemented in 10 classical TVD schemes, is evaluated against four two‐dimensional pure‐advection benchmark test cases where analytical solutions are available. The numerical results clearly show that the FFISAM leads to a better overall performance than the existing algorithms in terms of accuracy and convergence on arbitrary unstructured meshes for the 10 classical TVD schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper introduces a vertex‐centered linearity‐preserving finite volume scheme for the heterogeneous anisotropic diffusion equations on general polygonal meshes. The unknowns of this scheme are purely the values at the mesh vertices, and no auxiliary unknowns are utilized. The scheme is locally conservative with respect to the dual mesh, captures exactly the linear solutions, leads to a symmetric positive definite matrix, and yields a nine‐point stencil on structured quadrilateral meshes. The coercivity of the scheme is rigorously analyzed on arbitrary mesh size under some weak geometry assumptions. Also, the relation with the finite volume element method is discussed. Finally, some numerical tests show the optimal convergence rates for the discrete solution and flux on various mesh types and for various diffusion tensors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the third‐order weighted essential non‐oscillatory (WENO) schemes are used to simulate the two‐dimensional shallow water equations with the source terms on unstructured meshes. The balance of the flux and the source terms makes the shallow water equations fit to non‐flat bottom questions. The simulation of a tidal bore on an estuary with trumpet shape and Qiantang river is performed; the results show that the schemes can be used to simulate the current flow accurately and catch the stronger discontinuous in water wave, such as dam break and tidal bore effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This work describes the implementation and analysis of high‐order accurate schemes applied to high‐speed flows on unstructured grids. The class of essentially non‐oscillatory schemes (ENO), that includes weighted ENO schemes (WENO), is discussed in the paper with regard to the implementation of third‐ and fourth‐order accurate methods. The entire reconstruction process of ENO and WENO schemes is described with emphasis on the stencil selection algorithms. The stencils can be composed by control volumes with any number of edges, e.g. triangles, quadrilaterals and hybrid meshes. In the paper, ENO and WENO schemes are implemented for the solution of the dimensionless, 2‐D Euler equations in a cell centred finite volume context. High‐order flux integration is achieved using Gaussian quadratures. An approximate Riemann solver is used to evaluate the fluxes on the interfaces of the control volumes and a TVD Runge–Kutta scheme provides the time integration of the equations. Such a coupling of all these numerical tools, together with the high‐order interpolation of primitive variables provided by ENO and WENO schemes, leads to the desired order of accuracy expected in the solutions. An adaptive mesh refinement technique provides better resolution in regions with strong flowfield gradients. Results for high‐speed flow simulations are presented with the objective of assessing the implemented capability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a Navier–Stokes solver for steady and unsteady turbulent flows on unstructured/hybrid grids, with triangular and quadrilateral elements, which was implemented to run on Graphics Processing Units (GPUs). The paper focuses on programming issues for efficiently porting the CPU code to the GPU, using the CUDA language. Compared with cell‐centered schemes, the use of a vertex‐centered finite volume scheme on unstructured grids increases the programming complexity since the number of nodes connected by edge to any other node might vary a lot. Thus, delicate GPU memory handling is absolutely necessary in order to maximize the speed‐up of the GPU implementation with respect to the Fortran code running on a single CPU core. The developed GPU‐enabled code is used to numerically study steady and unsteady flows around the supercritical airfoil OAT15A, by laying emphasis on the transonic buffet phenomenon. The computations were carried out on NVIDIA's Ge‐Force GTX 285 graphics cards and speed‐ups up to ~46 × (on a single GPU, with double precision arithmetic) are reported. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
An unstructured dynamic mesh adaptation and load balancing algorithm has been developed for the efficient simulation of three‐dimensional unsteady inviscid flows on parallel machines. The numerical scheme was based on a cell‐centred finite‐volume method and the Roe's flux‐difference splitting. Second‐order accuracy was achieved in time by using an implicit Jacobi/Gauss–Seidel iteration. The resolution of time‐dependent solutions was enhanced by adopting an h‐refinement/coarsening algorithm. Parallelization and load balancing were concurrently achieved on the adaptive dynamic meshes for computational speed‐up and efficient memory redistribution. A new tree data structure for boundary faces was developed for the continuous transfer of the communication data across the parallel subdomain boundary. The parallel efficiency was validated by applying the present method to an unsteady shock‐tube problem. The flows around oscillating NACA0012 wing and F‐5 wing were also calculated for the numerical verification of the present dynamic mesh adaptation and load balancing algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In the following lines, we propose a numerical scheme for the shallow‐water system supplemented by topography and friction source terms, in a 2D unstructured context. This work proposes an improved version of the well‐balanced and robust numerical model recently introduced by Duran et al. (J. Comp. Phys., 235 , 565–586, 2013) for the pre‐balanced shallow‐water equations, accounting for varying topography. The present work aims at relaxing the robustness condition and includes a friction term. To this purpose, the scheme is modified using a recent method, entirely based on a modified Riemann solver. This approach preserves the robustness and well‐balanced properties of the original scheme and prevents unstable computations in the presence of low water depths. A series of numerical experiments are devoted to highlighting the performances of the resulting scheme. Simulations involving dry areas, complex geometry and topography are proposed to validate the stability of the numerical model in the neighbourhood of wet/dry transitions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A novel Mach‐uniform method to compute flows using unstructured staggered grids is discussed. The Mach‐uniform method is a generalization of the pressure‐correction approach for incompressible flows, and is valid for Mach numbers ranging from 0 (incompressible) to > 1 (supersonic). The primary variables (ρ u ,p and ρ) are updated sequentially. The grid consists of triangles. A staggered positioning of the variables is employed: the scalar variables are located at the centroids of the triangles, whereas the normal momentum components are positioned at the midpoints of the faces of the triangles. Discretization of the two‐dimensional flow equations on unstructured staggered grids is discussed. For the cell face fluxes there is a choice between first‐order upwind and central approximation. Flows around the NACA 0012 airfoil with freestream Mach numbers ranging from 0 to 1.2 are computed to demonstrate the Mach‐uniform accuracy and efficiency of the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Adaptive mesh refinement (AMR) shows attractive properties in automatically refining the flow region of interest, and with AMR, better prediction can be obtained with much less labor work and cost compared to manually remeshing or the global mesh refinement. Cartesian AMR is well established; however, AMR on hybrid unstructured mesh, which is heavily used in the high‐Reynolds number flow simulation, is less matured and existing methods may result in degraded mesh quality, which mostly happens in the boundary layer or near the sharp geometric features. User intervention or additional constraints, such as freezing all boundary layer elements or refining the whole boundary layer, are required to assist the refinement process. In this work, a novel AMR strategy is developed to handle existing difficulties. In the new method, high‐order unstructured elements are first generated based on the baseline mesh; then the refinement is conducted in the parametric space; at last, the mesh suitable for the solver is output. Generating refined elements in the parametric space with high‐order elements is the key of this method and this helps to guarantee both the accuracy and robustness. With the current method, 3‐dimensional hybrid unstructured mesh of huge size and complex geometry can be automatically refined, without user intervention nor additional constraints. With test cases including the 2‐dimensional airfoil and 3‐dimensional full aircraft, the current AMR method proves to be accurate, simple, and robust.  相似文献   

10.
A robust aspect ratio‐based agglomeration algorithm to generate high quality of coarse grids for unstructured and hybrid grids is proposed in this paper. The algorithm focuses on multigrid techniques for the numerical solution of Euler and Navier–Stokes equations, which conform to cell‐centered finite volume special discretization scheme, combines vertex‐based isotropic agglomeration and cell‐based directional agglomeration to yield large increases in convergence rates. Aspect ratio is used as fusing weight to capture the degree of cell convexity and give an indication of cell stretching. Agglomeration front queue is established to propagate inward from the boundaries, which stores isotropic vertex and also high‐stretched cell marked with different flag according to aspect ratio. We conduct the present method to solve Euler and Navier–Stokes equations on unstructured and hybrid grids and compare the results with single grid as well as MGridGen, which shows that the present method is efficient in reducing computational time for large‐scale system equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Adaptive mesh techniques are used widely in the numerical simulations of fluid flows, and the simulation results with high accuracies are obtained by appropriate mesh adaptations. However, gas–liquid two‐phase flows are still difficult to be simulated on adaptive meshes, especially on unstructured adaptive meshes, because the physical phenomena near gas–liquid interfaces are highly complicated and in general, not modeled appropriately on adaptive meshes. In this paper, a high‐precision unstructured adaptive mesh technique for gas–liquid two‐phase flows is developed and verified/validated. In the unstructured adaptive mesh technique, the PLIC algorithm is employed to simulate interfacial dynamic behaviors and, therefore, the reconstruction method for the interfaces in refined cells is developed, which satisfies the gas and liquid volume conservations and geometrical conservations of interfaces. In addition, the physics‐based consideration is performed on the momentum calculations near interfaces, and the calculation method with gas and liquid momentum conservations is developed. For verification, the slotted‐disk revolution problem is solved. As a result, the unstructured adaptive mesh technique succeeds in reproducing the slotted‐disk shape accurately and well maintaining the shape after one full‐revolution. The dam‐break problem is also simulated and the momentum conservative calculation method succeeds in providing physically appropriate results, which show good agreements with experimental data. Therefore, it is confirmed that the developed unstructured adaptive mesh technique is very efficient to simulate gas–liquid two‐phase flows accurately. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
New a posteriori error indicators based on edgewise slope‐limiting are presented. The L2‐norm is employed to measure the error of the solution gradient in both global and element sense. A second‐order Newton–Cotes formula is utilized in order to decompose the local gradient error from a ??1 finite element solution into a sum of edge contributions. The slope values at edge midpoints are interpolated from the two adjacent vertices. Traditional techniques to recover (superconvergent) nodal gradient values from consistent finite element slopes are reviewed. The deficiencies of standard smoothing procedures—L2‐projection and the Zienkiewicz–Zhu patch recovery—as applied to nonsmooth solutions are illustrated for simple academic configurations. The recovered gradient values are corrected by applying a slope limiter edge‐by‐edge so as to satisfy geometric constraints. The direct computation of slopes at edge midpoints by means of limited averaging of adjacent gradient values is proposed as an inexpensive alternative. Numerical tests for various solution profiles in one and two space dimensions are presented to demonstrate the potential of this postprocessing procedure as an error indicator. Finally, it is used to perform adaptive mesh refinement for compressible inviscid flow simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
For advection schemes with flux limiters derived on one‐dimensional grids to two‐dimensional (2D) unstructured triangular ones. In this method, the variables located normal to this face are taken into more account to compute the flux, by means of defining required nodes along the line through the center point of the considered face and perpendicular to it. Besides, the new method adopts the improved total variation diminishing schemes in, which consider the face position between the two neighboring cells as well as the size differences of the related cells; therefore, it fits 2D unstructured grids well. Compared with the present flux limiting methods for 2D unstructured grids, a higher accuracy and efficiency and a good monotonicity are achieved by the new method.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The accuracy of drag prediction in unstructured mesh CFD solver of TAS (Tohoku University Aerodynamic Simulation) code is discussed using a drag decomposition method. The drag decomposition method decomposes total drag into wave, profile, induced and spurious drag components, the latter resulting from numerical diffusion and errors. The mesh resolution analysis is conducted by the drag decomposition method. The effect of an advanced unstructured mesh scheme of U‐MUSCL reconstruction is also investigated by the drag decomposition method. The computational results show that the drag decomposition method reliably predicts drag and is capable of meaningful drag decomposition. The accuracy of drag prediction is increased by eliminating the spurious drag component from the total drag. It is also confirmed that the physical drag components are almost independent of the mesh resolution and scheme modification. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
An all‐speed algorithm based on the SIMPLE pressure‐correction scheme and the ‘retarded‐density’ approach has been formulated and implemented within an unstructured grid, finite volume (FV) scheme for both incompressible and compressible flows, the latter involving interaction of shock waves. The collocated storage arrangement for all variables is adopted, and the checkerboard oscillations are eliminated by using a pressure‐weighted interpolation method, similar to that of Rhie and Chow [Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 1983; 21 : 1525]. The solution accuracy is greatly enhanced when a higher‐order convection scheme combined with adaptive mesh refinement (AMR) are used. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider edge‐based reconstruction (EBR) schemes for solving the Euler equations on unstructured tetrahedral meshes. These schemes are based on a high‐accuracy quasi‐1D reconstruction of variables on an extended stencil along the edge‐based direction. For an arbitrary tetrahedral mesh, the EBR schemes provide higher accuracy in comparison with most second‐order schemes at rather low computational costs. The EBR schemes are built in the framework of vertex‐centered formulation for the point‐wise values of variables. Here, we prove the high accuracy of EBR schemes for uniform grid‐like meshes, introduce an economical implementation of quasi‐one‐dimensional reconstruction and the resulting new scheme of EBR family, estimate the computational costs, and give new verification results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A parallel DSMC method based on a cell‐based data structure is developed for the efficient simulation of rarefied gas flows on PC‐clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two‐dimensional supersonic leading‐edge flow, the axi‐symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC‐based parallel machines. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper a finite volume scheme for the heterogeneous and anisotropic diffusion equations is proposed on general, possibly nonconforming meshes. This scheme has both cell‐centered unknowns and vertex unknowns. The vertex unknowns are treated as intermediate ones and are expressed as a linear weighted combination of the surrounding cell‐centered unknowns, which reduces the scheme to a completely cell‐centered one. We propose two types of new explicit weights which allow arbitrary diffusion tensors, and are neither discontinuity dependent nor mesh topology dependent. Both the derivation of the scheme and that of new weights satisfy the linearity‐preserving criterion which requires that a discretization scheme should be exact on linear solutions. The resulting new scheme is called as the linearity‐preserving cell‐centered scheme and the numerical results show that it maintain optimal convergence rates for the solution and flux on general polygonal distorted meshes in case that the diffusion tensor is taken to be anisotropic, at times heterogeneous, and/or discontinuous. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An Arbitrary Lagrangian–Eulerian method for the calculation of incompressible Navier–Stokes equations in deforming geometries is described. The mesh node connectivity is defined by a Delaunay triangulation of the nodes, whereas the discretized equations are solved using finite volumes defined by the Voronoi dual of the triangulation. For prescribed boundary motion, an automatic node motion algorithm provides smooth motion of the interior nodes. Changes in the connectivity of the nodes are made through the use of local transformations to maintain the mesh as Delaunay. This allows the nodes and their associated Voronoi finite volumes to migrate through the domain in a free manner, without compromising the quality of the mesh. An MAC finite volume solver is applied on the Voronoi dual using a cell‐centred non‐staggered formulation, with cell‐face velocities being calculated by the Rhie–Chow momentum interpolation. Advective fluxes are approximated with the third‐order QUICK differencing scheme. The solver is demonstrated via its application to a driven cavity flow, and the flow about flapping aerofoil geometries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号