首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we proposed the Al/Al2O3/SmAlO3/SiO2/Si flash memory devices using high-k SmAlO3 film as a charge trapping layer and high-k Al2O3 film as a blocking layer. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopic and atomic force microscopy. The SmAlO3 flash memory devices annealed at 800 °C showed excellent electrical properties, such as a large memory window of ~2.61 V (measured at a sweep voltage range of ±5 V) and a small charge loss of ~7.1% (measured time up to 104 s). In addition, the charge trap centroid and charge trap density were extracted by constant current stress method.  相似文献   

2.
The TiO2/p-Si/Ag, graphene (GNR) doped TiO2/p-Si/Ag and multi-walled carbon nanotube (MWCNT) doped TiO2/p-Si/Ag heterojunction devices were fabricated by electrospinning technique at same conditions. Their structural, morphological properties, thermal analyses (TGA), and capacitance voltage characteristics were studied and compared. The undoped, GNR and MWCNT doped TiO2 structures obtained successfully according to XRD measurements. Morphological properties of the undoped, GNR and MWCNT doped TiO2 composite structures have rod or ribbon like structures. The TGA result confirmed the GNR and MWCNT doped TiO2 structures. The C-V and G-V measurements were employed for electrical characterization of the TiO2/p-Si/Ag, GNR doped TiO2/p-Si/Ag and MWCNT doped TiO2/p-Si/Ag devices for various frequencies at room temperatures. The results imparted that the capacitance and conductance behaviors of all devices are strong functions of the frequency and voltage. The electrical parameters were calculated from C−2-V plots of the heterojunction devices and compared for three devices. The transient photocapacitance plots revealed that the devices can be employed for optical communication applications.  相似文献   

3.
Electrical devices involve different types of diode in prospective electronics is of great importance. In this study, p-type Si surface was covered with thin film of TiO2 dispersion in H2O to construct p-Si/TiO2/Al Schottky barrier diode (D1) and the other one with TiO2 dispersion doped with zirconium to construct p-Si/TiO2-Zr/Al diode (D2) by drop-casting method in the same conditions. Electrical properties of as-prepared diodes and effect of zirconium as a dopant were investigated. Current–voltage (IV) characteristics of these devices were measured at ambient conditions. Some parameters including ideality factor (n), barrier height (ΦB0), series resistance (Rs) and interface state density (Nss) were calculated from IV behaviours of diodes. Structural comparisons were based on SEM and EDX measurements. Experimental results indicated that electrical parameters of p-Si/TiO2/Al Schottky device were influenced by the zirconium dopant in TiO2.  相似文献   

4.
This is a report on the electrical characterization of gallium nitride (GaN) nanowire (NW) p–n junction diodes. These diodes were formed by assembling n-GaN NWs on p-Si (1 0 0) substrates using alternating current (AC) dielectrophoresis (DEP). The AC DEP was optimized with a bias voltage of 15 Vp−p at a frequency of 1 kHz. The hetero-junction single GaN nanowire p-n diode (n-GaN NW/p-Si) showed well-defined current rectifying behavior with a forward voltage drop of 1.2–2.0 V at a current density of 10–60 A/cm2. The GaN nanowire p–n diodes had a high parasite resistance in the range of >470 kΩ. We observed that these high resistances were mostly the result of the metal contacts to the n-GaN NWs. We also found that these parasite resistances were reduced by the formation of an additional capping layer on the top of the n-GaN NW as well as high temperature annealing.  相似文献   

5.
In this work, the investigation of the interface state density and series resistance from capacitance–voltage (CV) and conductance–voltage (G/ωV) characteristics in In/SiO2/p-Si metal–insulator–semiconductor (MIS) structures with thin interfacial insulator layer have been reported. The thickness of SiO2 film obtained from the measurement of the oxide capacitance corrected for series resistance in the strong accumulation region is 220 Å. The forward and reverse bias CV and G/ωV characteristics of MIS structures have been studied at the frequency range 30 kHz–1 MHz at room temperature. The frequency dispersion in capacitance and conductance can be interpreted in terms of the series resistance (Rs) and interface state density (Dit) values. Both the series resistance Rs and density of interface states Dit are strongly frequency-dependent and decrease with increasing frequency. The distribution profile of RsV gives a peak at low frequencies in the depletion region and disappears with increasing frequency. Experimental results show that the interfacial polarization contributes to the improvement of the dielectric properties of In/SiO2/p-Si MIS structures. The interface state density value of In/SiO2/p-Si MIS diode calculated at strong accumulation region is 1.11×1012 eV−1 cm−2 at 1 MHz. It is found that the calculated value of Dit (≈1012 eV−1 cm−2) is not high enough to pin the Fermi level of the Si substrate disrupting the device operation.  相似文献   

6.
The temperature dependence of capacitance–voltage (CV) and conductance–voltage (G/wV) characteristics of Al/HfO2/p-Si metal-oxide-semiconductor (MOS) device has been investigated by considering the effect of series resistance (Rs) and interface state density (Nss) over the temperature range of 300–400 K. The CV and G/wV characteristics confirm that the Nss and Rs of the diode are important parameters that strongly influence the electric parameters in MOS device. It is found that in the presence of series resistance, the forward bias CV plots exhibits a peak, and its position shifts towards lower voltages with increasing temperature. The density of Nss, depending on the temperature, was determined from the (CV) and (G/wV) data using the Hill–Coleman Method. Also, the temperature dependence of dielectric properties at different fixed frequencies over the temperature range of 300–400 K was investigated. In addition, the electric modulus formalisms were employed to understand the relaxation mechanism of the Al/HfO2/p-Si structure.  相似文献   

7.
利用LPCVD方法在Si(100)衬底上获得了3C-SiC外延膜,扫描电子显微镜(SEM)研究表明3C-SiC/p-Si界面平整、光滑,无明显的坑洞形成。研究了以In和Al为接触电极的3C-SiC/p-Si异质结的I-V,C-V特性及I-V特性的温度依赖关系,比较了In电极的3C-SiC/p-Si异质结构和以SiGe作为缓冲层的3C-SiC/SiGe/p-Si异质结构的I-V特性,实验发现引入SiGe缓冲层后,器件的反向击穿电压由40V提高到70V以上。室温下Al电极3C-SiC/p-Si二极管的最大反向击穿电压接近100V,品质因子为1.95。  相似文献   

8.
Metal-oxide electrochemical metallization (ECM) memory is a promising candidate for the next generation nonvolatile memory. But this memory suffers from large dispersion of resistive switching parameters due to the intrinsic randomness of the conductive filament. In this work, we have proposed a self-doping approach to improve the resistive switching characteristics. The fabricated Pt/HfO2:Cu/Cu device shows outstanding nonvolatile memory properties, including high uniformity, good endurance, long retention and fast switching speed. The results demonstrate that the self-doping approach is an effective method to improve the metal-oxide ECM memory performances and the self-doped Pt/HfO2:Cu/Cu device has high potentiality for the nonvolatile memory applications in the future.  相似文献   

9.
Nano-thick Ag films were electrolessly deposited on TiN/p-Si(100) substrates. The substrates were prepared by sputtering TiN on p-Si(100) wafers. An activation process of the substrates was performed by immersing the substrates in a solution of 0.0019 moLL-1PdCl2+0.45 moLL-1HF+8.7 moLL-1aceticacid+0.036 moLL-1 HCl so as to obtain the Pd seed layer. The general composition of the electroless Ag bath was 0.0032 moLL-1AgNO3+2.24 moLL-1NH3+0.56 moLL-1aceticacid+0.1 moLL-1 NH2NH2 at pH 10.2. The morphologies of the Pd seed layer and the Ag films were characterized by atomic force microscopy (AFM). The effect of the Pd activation on electroless Ag deposition was tested by open circuit potential with time technology (OCP-t). For comparison, the morphology of the films deposited by electrochemical deposition on the substrates was also studied by AFM. PACS 82.45.Mp; 81.15.Pq; 81.10.Dn  相似文献   

10.
Fine structure in the nvi, VIIVV spectrum of clean Pt (100) has been observed, and interpreted as “band like” in origin rather than quasi-atomic. Differences in the dependence of the Auger yield on primary beam energy are observed between the NVI, VIIVV and OIIIVV peaks, and are associated with anomalies in the dependence of the inner shell ionization crossection of the 4f level. Low energy electron loss spectra on the clean surface have been investigated at primary energies in the range 71–774 eV and at angles of incidence of the beam 0–60°. The results are related to high energy loss and optical data, and assignments are given for inter-band and plasmon losses. With approximately 34 of a monolayer of CO on the surface there is a prominent additional loss at around 13.5 eV, which is interpreted as a one electron transition from a σ state below the d band to available states several electron volts above the Fermi level.  相似文献   

11.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

12.
As-deposited HfO2 films were modified by CHF3, C4F8, and mixed C4F8/O2 plasmas in a dual-frequency capacitively coupled plasma chamber driven by radio frequency generators of 60 MHz as the high frequency (HF) source and 2 MHz as the low frequency source (60/2 MHz). The influences of various surface plasma treatments under CHF3, C4F8, and C4F8/O2 were investigated in order to understand the chemical and structural changes in thin-film systems, as well as their influence on the electrical properties. Fluorine atoms were incorporated into the HfO2 films by either CHF3 or C4F8 plasma treatment; meanwhile, the C/F films were formed on the surface of the HfO2 films. The formation of C/F layers decreased the k value of the gate stacks because of its low dielectric constant. However, the addition of O2 gas in the discharge gases suppressed the formation of C/F layers. After thermal annealing, tetragonal HfO2 phase was investigated in both samples treated with CHF3 and C4F8 plasmas. However, the samples treated with O-rich plasmas showed monoclinic phase, which indicated that the addition of O plasmas could influence the Hf/O ratio of the HfO2 films. The mechanism of the t-HfO2 formation was attributed to oxygen insufficiency generated by the incorporation of F atoms. The capacitors treated with C4F8/O2 plasmas displayed the highest k value, which ascribed that the C/F layers were suppressed and the tetragonal phase of HfO2 was formed. Good electrical properties, especially on the hysteresis voltage and frequency dispersion, were obtained because the bulk traps were passivated by the incorporation of F atoms. However, the H-related traps were generated during the CHF3 plasma treatments, which caused the performance degradation. All the treated samples showed lower leakage current density than the as-deposited HfO2 films at negative bias due to the reduced trap-assisted tunneling by the incorporation of F to block the electrons transferring from metal electrode to the trap level.  相似文献   

13.
New oxides with high dielectric constant are required for gate oxides. ZrO2 is a typical example with ionic bonding. We give the rules for bonding at interfaces between Si and ionic oxides, to satisfy valence requirements and give an insulating interface. Total energies and band offsets are calculated for various (100)Si:ZrO(2) and HfO2 interface structures. The oxygen-terminated interface is found to be favored for devices, because it has no gap states and has a band offset which is rather independent of interfacial bonding.  相似文献   

14.
15.
16.
In this work,we investigate the electrical transport property and electronic structure of oxide heterostructure LaCrO_3/SrTiO_3(111).The interface grown under relatively low oxygen partial pressure is found to be metallic with a conducting critical thickness of 11 unit cells of LaCrO_3.This criticality is also observed by x-ray photoelectron spectroscopy,in which the Ti~(3+) signal intensity at the spectrum edge of the Ti-2p_(3/2) core level increases rapidly when the critical thickness is reached.The variations of the valence band offset and full width at half maximum of the core-level spectrum with LaCrO_3 thickness suggest that the built-in fields exist both in LaCrO_3 and in SrTiO_3.Two possible origins are proposed:the charge transfer from LaCrO_3 and the formation of a quantum well in SrTiO_3.Our results shed light on the understanding of the doping mechanism at the polar/non-polar oxide interface.Moreover,due to the interesting lattice and spin structure of LCO in the(111) direction,our work provides a basis for further exploring the novel topological quantum phenomena in this system.  相似文献   

17.
A detailed analysis of the effects of constant low current injection was done, both in accumulation (J=0.001-0.2 mA cm−2) and in inversion (J=0.001-0.04 mA/cm2). The samples under investigation were metal-insulator-silicon structures containing high-k dielectric Ta2O5 radio frequency sputtered on p-type Si wafers, with Pt metal gate electrodes. The obtained results were compared with the ones obtained for Al gate samples. This experiment confirms the occurrence of charge trapping in the case of high-work-function Pt as metal. The effect has been attributed to emitting of electrons into the Pt conduction band during which creation of empty traps in the dielectric occurs, which then attract electrons injected in the dielectric. In order to examine the reversibility of the process, successive short runs as well as long runs (up to 10000 s) were performed.  相似文献   

18.
In this study, we investigated the effect of a post annealing sequence on the HfO2 crystal phase and the memory window of charge trap devices with TiN-Al2O3-HfO2-SiO2-Si stacks. The charge trap dielectrics of HfO2 were deposited by atomic layer deposition and were annealed in an oxygen environment with or without Al2O3 blocking oxides. X-ray diffraction analysis showed that, after thermal annealing, the predominant crystal phase of HfO2 is divided into tetragonal and monoclinic phase depending on the presence or absence of Al2O3 blocking oxide. In addition, deconvolution of X-ray diffraction spectra showed that, with increasing annealing temperature, the fraction of the tetragonal phase in the HfO2 film was enhanced with the Al2O3 blocking oxide, while it was reduced without the Al2O3 blocking oxide. Finally, measurements of program/erase and increase-step-pulse programming showed that the charge trap efficiency and the memory window of the charge trap devices increased with decreasing fraction of tetragonal HfO2.  相似文献   

19.
Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations. PACS 78.20.-e; 77.84.-s; 77.55.+f  相似文献   

20.
The electronic and optical properties of the ZrS_2/SnS_2 van der Waals heterostructure have been investigated.We find out that the formed heterostructure has an intrinsic type-I band alignment. Moreover, the characteristics of optical absorption in the heterostructure can be enhanced to the amount of 106 in the ultraviolet light region. In addition, the tuning electronic properties of ZrS_2/SnS_2 heterostructure are very interesting, due to the transitions from type-I to type-II band alignment that can occur by applying an external electric field.These results suggest that the atomically thin materials ZrS_2/SnS_2 heterostructure will be utilized for flexible optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号