首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The NCAs of the following five amino acids were polymerized in bulk at 120 °C without addition of a catalyst or initiator: sarcosine (Sar), L ‐alanine (L ‐Ala), D ,L ‐phenylalanine (D ,L ‐Phe), D ,L ‐leucine (D ,L ‐Leu) and D ,L ‐valine (D,L ‐Val). The virgin reaction products were characterized by viscosity measurements 13C NMR spectroscopy and MALDI‐TOF mass spectrometry. In addition to numerous low molar mass byproducts cyclic polypeptides were formed as the main reaction products in the mass range above 800 Da. Two types of cyclic oligo‐ and polypeptides were detected in all cases with exception of sarcosine NCA, which only yielded one class of cyclic polypeptides. The efficient formation of cyclic oligo‐ and polypeptides explains why high molar mass polymers cannot be obtained by thermal polymerizations of α‐amino acid NCAs. Various polymerization mechanisms were discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4012–4020, 2008  相似文献   

2.
This article reviews recent developments in the polymerization of α‐amino acid‐ N‐carboxyanhydrides (NCAs) to form polypeptides. Traditional methods used to polymerize these monomers are described, and limitations in the utility of these systems for the preparation of polypeptides with controlled molecular weights and narrow molecular weight distributions are discussed. The development of transition‐metal‐based initiators, which activate the monomers to form covalent active species, permits the formation of polypeptides via the living polymerization of NCAs. In these systems, polymer molecular weights are controlled by monomer‐to‐initiator stoichiometry, polydispersities are low, and block copolypeptides can be prepared. The scope and limitations of these initiators and their key features and mode of operation are described in detail in this highlight. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3011–3018, 2000  相似文献   

3.
Differing from the moisture‐sensitive α‐amino acid N‐carboxyanhydrides (AA‐NCAs) monomers, N‐phenoxycarbonyl α‐amino acids (AA‐NPCs) can be prepared and stored in open air. In this contribution, we report that the controlled polymerizations of AA‐NPC monomers of Otert‐butyl‐dl ‐serine (BRS‐NPC), Nε‐benzyloxycarbonyl‐l ‐lysine (ZLL‐NPC) and Nε‐trifluoroacetyl‐l ‐lysine (FLL‐NPC) initiated by amines are surprisingly able to tolerate common nucleophilic impurities such as water and alcohols at a level of monomer concentration. The structures of polypeptides synthesized in the presence of water or alcohols agree well with the designed ones in the case of repeated chain extensions. Detailed mechanism study and density functional theory calculation reveal that the low concentration of AA‐NCA and the high activity of amines are the key factors to the controllability of AA‐NPC polymerizations. The water‐ and alcohol‐tolerant property in polymerizations of AA‐NPCs encourages the following studies on unprotected (phenolic) hydroxyl groups containing AA‐NPCs. The controllable polymerizations of N‐phenoxycarbonyl l ‐tyrosine (LT‐NPC) and N‐phenoxycarbonyl S‐(3‐hydroxypropyl)‐l ‐cysteine (HLC‐NPC) initiated by amines are confirmed and reported for the first time, which extends the library of AA‐NPCs and polypeptides as well. All the universality of library, the convenience of monomer preparation, and the controllability and water‐ and alcohol‐tolerant property of polymerization of AA‐NPCs significantly enhance the feasibility of polypeptide synthesis, making AA‐NPC approach a promising synthetic method of polypeptides. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 907–916  相似文献   

4.
Polymerizations of α-aminoacid N-carboxyanhydrides (α-NCAs) can be initiated by nucleophilic or basic reagents. Depending on the nature of the reagent, nucleophilic attack at the carbonyl group C-5 or deprotonation of the N-H group may be the first reaction step. 1H NMR spectroscopy is best suited to detect incorporation of initiator fragments. In the case of primary aliphatic amines quantitative endgroup analyses may even allow the calculation of the average degree of polymerization (DP). In the case of base-initiated polymerization the formation of N-acyl-NCA endgroups or the incorporation of the basic initiator is detectable. Furthermore, the role of electrophilic co-catalysts, such as isocyanates or N-acyl-NCAs, can be elucidated. 13C- and 15N NMR spectroscopy are better suited than 1H NMR spectroscopy for stereosequence analyses of poly(D,L-amino acid)s. The results of both methods agree in that primary amine-initiated polymerizations of D,L-NCAs yield nearly random stereosequences. Trialkylamine initiated polymerizations of α-helix forming D,L-NCAs favour the formation of isotactic blocks, whereas in the case of non-helicogenic NCAs (e.g. D,L-Val-NCA) syndiotactic blocks are preferentially formed. 15N NMR spectroscopy also enables the sequence analysis of binary copolypeptides, and in favourable cases even ternary copolypeptides can be analyzed. 13C NMR crosspolarization/magic angle spinning (CP/MAS) spectroscopy of solid polypeptides enables the qualitative and quantitative determination of their secondary structure. Such investigations revealed that primary amine and tertiary amine-initiated polymerizations may yield different ratios of crystallites built up by β-sheets or α-helices and thereby bimodal molecular weight distributions (MWDs).  相似文献   

5.
The need for a scalable synthesis of not sequence defined polypeptides as biomaterials is met by the ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs). Even though this polymerization technique appears straight forward, it holds pitfalls in terms of reproducibility and overall control over the polymerization conditions, which depends, beside choice of solvent or initiator, significantly on reagent purity. In addition, the synthesis of monomers can lead to the formation of racemic amino acids. Thus, in this work, we describe the benefits of highly pure monomers in order to control nucleophilic ring-opening polymerization NCAs. Hereby, monomer purity is investigated by relating melting points of NCAs with single-crystal and powder X-ray diffraction crystallography data, which further proves retained stereo-information of NCAs.  相似文献   

6.
Polymerization of N‐carboxy anhydrides (NCAs) is the primary process used to prepare polypeptides. The synthesis of various pure NCAs is key to the efficient synthesis of polypeptides. The only practical method that can be used to synthesize NCAs requires harsh acidic conditions that make acid‐labile substrates unusable and results in an undesired ring opening of NCAs. Basic‐to‐acidic flash switching and subsequent flash dilution technology in a microflow reactor was used to demonstrate the synthesis of NCAs. It is both rapid (0.1 s) and mild (20 °C) and includes substrates containing acid‐labile functional groups. The basic‐to‐acidic flash switching enabled both an acceleration of the desired NCA formation and avoided the undesired ring opening of NCAs. The flash dilution precluded the undesired decomposition of acid‐labile functional groups. The developed process allowed the synthesis of various NCAs which cannot be readily synthesized using conventional batch methods.  相似文献   

7.
The preparation of new glycosylated-L-lysine-N-carboxyanhydride (glyco-K NCA) monomers is described. These monomers employ C-linked sugars and amide linkages to lysine for improved stability without sacrificing biochemical properties. Three glyco-K NCAs were synthesized, purified, and found to undergo living polymerization using transition metal initiation. These are the first living polymerizations of glycosylated NCAs and were used to prepare well-defined, high molecular weight glycopolypeptides and block and statistical glycocopolypeptides. This methodology solves many long-standing problems in the direct synthesis of glycopolypeptides from N-carboxyanhydrides relating to monomer synthesis, purification, and polymerization and gives polypeptides with 100% glycosylation. These long chain glycopolypeptides have potential to be good mimics of natural high molecular weight glycoproteins.  相似文献   

8.
Polypeptides are one kind of promising biodegradable and biocompatible biomedical polymers with the structural units of various α-amino acids. Polypeptides were first polymerized by the ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) by Leuchs and Hermann in 1906. In the past decades, several effective strategies, including the selection of initiators, the adjustment of reaction conditions, and the introduction of catalysts, have been reported to improve the controllability of the ROP of various α-amino acid NCAs to synthesize different polypeptides with precise chemical structures and low polydispersity indexes. In this Review, the strategies, mechanisms, challenges, and opportunities for controlled synthesis of polypeptides by the ROP of different α-amino acid NCAs have been declared.  相似文献   

9.
A series of activated urethane‐type derivatives of α‐amino acids were synthesized and applied to polypeptide synthesis. The urethane used herein, N‐(4‐nitrophenoxycarbonyl)‐α‐amino acids 1 , were synthesized by N‐carbamoylation of γ‐benzyl‐L ‐glutamate, β‐benzyl‐L ‐aspartate, L ‐leucine, L ‐phenylalanine, and L ‐proline, with 4‐nitrophenyl chloroformate. When 1 was dissolved in N,N‐dimethylacetamide (DMAc) and heated at 60 °C, it was smoothly converted into the corresponding polypeptides with releasing 4‐nitrophenol and carbon dioxide. Spectroscopic analyses of the obtained polypeptides revealed that they were comparable with the authentic polypeptides synthesized by the ring‐opening polymerizations of amino acid N‐carboxyanhydrides (NCAs). Besides the successful polycondensations of a series of 1 , their polycondensations of 1a and other 1 were also successfully carried out to obtain the corresponding statistic copolypeptides. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2525–2535, 2008  相似文献   

10.
《中国化学快报》2020,31(12):3001-3014
Polypeptides are one kind of promising biodegradable and biocompatible biomedical polymers with the structural units of various α-amino acids. Polypeptides were first polymerized by the ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) by Leuchs and Hermann in 1906. In the past decades, several effective strategies, including the selection of initiators, the adjustment of reaction conditions, and the introduction of catalysts, have been reported to improve the controllability of the ROP of various α-amino acid NCAs to synthesize different polypeptides with precise chemical structures and low polydispersity indexes. In this Review, the strategies, mechanisms, challenges, and opportunities for controlled synthesis of polypeptides by the ROP of different α-amino acid NCAs have been declared.  相似文献   

11.
At first, formation of cycles in commercial poly(l ‐lactide)s is discussed and compared with benzyl alcohol‐initiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4‐cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end‐biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of l ‐lactide were performed with various diphenols as initiators/co‐catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even‐numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring‐expansion polymerization (REP). The influence of temperature, time, co‐catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(l ‐lactide)s weight average molecular weights (Mw's) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of initiator and catalyst and temperature on the formation of cyclic poly(l ‐lactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1915–1925  相似文献   

12.
The past decade has witnessed significantly increased interest in the development of smart polypeptide‐based organo‐ and hydrogel systems with stimuli responsiveness, especially those that exhibit sol–gel phase‐transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α‐amino acid N‐carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well‐defined polypeptides and peptide hybrid polymeric materials. One‐dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross‐linking, result in the construction of three‐dimensional matrices of polypeptide gel systems. The macroscopic sol–gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli‐triggered sol–gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide‐based organo‐ and hydrogels.  相似文献   

13.
Amino acid based diamides are widely used as a substructure in supramolecular polymers and are also key components of polypeptides that help to understand protein folding. The interplay of folding and aggregation of a diamide was used to achieve seed‐initiated supramolecular polymerization. For that purpose, a pyrene‐substituted diamide was synthesized in which pyrene is used as a tracer to monitor the supramolecular polymerization. Thermodynamics and time‐dependent studies revealed that the folding of the diamide moiety, via the formation of intramolecular hydrogen bonds, effectively prevents a spontaneous nucleation that leads to supramolecular polymerization. Under such out‐of‐equilibrium conditions, the addition of seeds successfully initiates the supramolecular polymerization. These results demonstrate the utility of such amino acid based diamides in programmable supramolecular polymerizations.  相似文献   

14.
Ring-opening polymerisation of N-carboxy anhydrides of γ-benzyl-L- glutamate, L-alanine and L-leucine by a primary amine initiator in acetonitrile and in hexane was examined, with care taken to avoid contamination by moisture. The polymerisation of amino acid NCAs initiated by butylamine in hexane proceeded in the crystalline state (solid state) because the NCA crystals did not dissolve in hexane. Although amino acid NCAs were believed to polymerise completely in acetonitrile, polymerisation of the amino acid NCAs in acetonitrile was found to stop at around 20% conversion. As resulting polypeptides did not dissolve in acetonitrile, the polymer terminals were considered to be occluded in the polymer precipitate. On the other hand, each amino acid NCA was much more reactive in the solid state in hexane than in acetonitrile. Especially, L-leucine NCA showed remarkable reactivity in the solid state. The reactivity in the solid state was explained with reference to the crystal structure.  相似文献   

15.
Diaryliodonium salts undergo facile reduction by the dialkylborane, 9‐BBN. The combination of these two reagents constitutes a redox couple that can be employed as a convenient and versatile initiator system for the cationic polymerizations of styrenic monomers, vinyl ethers and the ring‐opening polymerizations of cyclic ethers and acetals including; epoxides, oxetanes, tetrahydrofuran, and 1,3,5‐trioxane. The polymerizations of these monomers can be carried out in either neat monomer or under solution conditions. Typically, the redox cationic polymerizations of the above monomers are rapid and exothermic. Optical pyrometry (infrared thermography) was employed as a convenient method with which to monitor and optimize the aforementioned redox initiated cationic polymerizations. Studies of the effects of variations in the structure and concentrations of the diaryliodonium salt and 9‐BBN on the polymerizations of various monomers were carried out. A mechanism for the redox cationic initiation of the polymerizations was proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5639–5651, 2009  相似文献   

16.
Comparative primary structural analysis of polypeptides from antenna complexes from species of the three families of Rhodospirillaneae indicates the structural principles responsible for the formation of spectrally distinct light-harvesting complexes. In many of the characterized antenna systems the basic structural minimal unit is an alpha/beta polypeptide pair. Specific clusters of amino acid residues, in particular aromatic residues in the C-terminal domain, identify the antenna polypeptides to specific types of antenna systems, such as B880 (strong circular dichroism (CD)), B870 (weak CD), B800-850 (high), B800-850 (low) or B800-820. The core complex B880 (B1020) of species from Ectothiorhodospiraceae and Chromatiaceae apparently consists of four (alpha 1 alpha 2 beta 1 beta 2) or three (2 alpha beta 1 beta 2) chemically dissimilar antenna polypeptides respectively. There is good evidence that the so-called variable antenna complexes, such as the B800-850 (high), B800-850 (low) or B800-820 of Rp. acidophila, Rp. palustris and Cr. vinosum, are comprised of multiple forms of peripheral light-harvesting polypeptides. Structural similarities between prokaryotic and eukaryotic antenna polypeptides are discussed in terms of similar pigment organization. The structural basis for the strict organization of pigment molecules (bacteriochlorophyll (BChl) cluster) in the antenna system of purple bacteria is the hierarchical organization of the alpha- and beta-antenna polypeptides within and between the antenna complexes. On the basis of the three-domain structure of the antenna polypeptides with the central hydrophobic domain, forming a transmembrane alpha helix, possible arrangements of the antenna polypeptides in the three-dimensional structure of core and peripheral antenna complexes are discussed. Important structural and functional features of these polypeptides and therefore of the BChl cluster are the alpha/beta heterodimers, the alpha 2 beta 2 basic units and cyclic arrangements of these basic units. Equally important for the formation of the antenna complexes or the entire antenna are polypeptide-polypeptide, pigment-pigment and pigment-polypeptide interactions.  相似文献   

17.
The ability to reversibly cross‐link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S‐alkylsulfonyl‐l ‐cysteines and N‐carboxy anhydrides (NCA) thereof for peptide synthesis. The S‐alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well‐defined homo‐ as well as block co‐polymers. Yet, thiols react immediately with the S‐alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps.  相似文献   

18.
It is demonstrated here that three different α‐amino N‐carboxyanhydrides (NCAs), including for the first time O‐benzyl‐L ‐threonine NCA, can be polymerized in a controlled/“living” fashion without the need for transition metal catalysts or complex custom‐made glassware. Homopolymerizations in tetrahydrofuran gave monomodal distributions, high conversions, predictable Mn values and displayed first‐order kinetics. Chain extension experiments from poly(benzyl‐L ‐threonine), using N,N‐dimethylacetamide to avoid the formation of insoluble β‐sheets, was used to create a range of block copolypeptides of controlled structure. Monomodal molecular weight distributions are observed throughout and molecular weights agree well with predicted values, although polydispersities are generally higher than those observed using more experimentally challenging techniques. This method therefore represents a practical approach to the synthesis of well‐defined polypeptides without the requirement for specialized glassware or glove‐box techniques. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2882–2891, 2009  相似文献   

19.
The first part of this paper describes cationic polymerizations of cyclic imino ethers, 2-oxazolines and 5,6-dihydro–4H–1,3–oxazines, which proceed via cyclic onium propagating species or via covalently bonded alkyl halide species. In an extreme case, both ionic and covalent species are present in equilibrium and propagate concurrently. The propagation rate constants due to the respective species were determined. A poly(cyclic imino ether) becomes hydrophilic or lipophilic dependent on the substituent of the monomer. Based on this principle, various types of nonionic polymer surfactants have been prepared, e.g., diblock and triblock copolymers, graft copolymers, and surfactants having one 2-oxazoline chain. The second part is concerned with ring-opening polymerizations of new eight cyclic trivalent phosphorus monomers. These polymerizations produced phosphorus-containing functional polymers such as a chelating resin. 31P NMR analyses of polymerization of cyclic phosphinite monomers led to propose a new mechanism of “Electrophilic Ring-Opening Polymerization”.  相似文献   

20.
Based on their versatility with respect to amino acid type and sequence, polypeptides have become attractive for a number of biological applications such as drug delivery, biomineralization, and drugs. N‐carboxy anhydride (NCA) polymerization is a convenient way to rapidly prepare high‐molecular weight polypeptides with good control over molecular weight and polydispersity. However, the kinetics of the incorporation of NCA monomers into copolypeptides during random copolymerization are poorly understood. Here, kinetic data is presented that allows insight into the NCA polymerization of a terpolymer composed of three commercially relevant amino acids, namely, glutamic acid, lysine, and tyrosine. Furthermore, kinetic data and copolymerization parameters from the copolymerization of binary mixtures of these three amino acid NCAs is used to make predictions of the terpolymer composition. This study provides access to the information necessary to prepare functional copolypeptides with better‐defined sequence architecture that will be essential for the future development of polypeptide‐based materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1228–1236  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号