首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Essential oils of plants have been used widely in cosmetic preparations. Being both perfuming and active ingredients, the functions of essential oils mean they are high-value ingredients. In this study, the leaf of Etlingera elatior (Jack) or Torch ginger was used. The essential oils (EO) were prepared by conventional hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD). The volatile compounds of EOs were analyzed by gas chromatography spectroscopy (GC-MS). The antioxidant activities by means of DPPH radical scavenging and ferric-reducing antioxidant power (FRAP) were determined. The inhibition of tyrosinase activity was investigated. The cytotoxicity was performed against human fibroblast cell lines (NIH/3T3) and melanoma cell lines (A375 and B16F10). The decreasing melanin content was measured in melanoma cell lines. The resulting essential oils were detected for 41 compounds from HD extraction dominants by terpenes, namely sesquiterpenes (48.499%) and monoterpenes (19.419%), while 26 compounds were detected from MAHD with the fatty alcohols as the major group. The higher antioxidant activities were found in HD EO (IC50 of 16.25 ± 0.09 mg/mL from DPPH assay and 0.91 ± 0.01 mg TEAC/g extract from FRAP assay). The survival of normal fibroblast cell lines remained at 90% at 500 µg/mL HD EO, where the EO possessed the half-maximal toxicity dose (TD50) of 214.85 ± 4.647 and 241.128 ± 2.134 μg/mL on B16F10 and A375 cell lines, respectively. This could suggest that the EO is highly selective against the melanoma cell lines. The melanin content was decreased at the half-maximum efficacy (IC50) at 252.12 ± 3.02 and 253.56 ± 3.65 in the A375 and B1610 cell lines, respectively, which were approximately 2.8-fold lower than kojic acid, the standard compound. The results of this study evidence the use of Etlingera elatior (Jack) leaf as a source of essential oil as an active agent in cosmetics.  相似文献   

2.
Nanfeng mandarins (Citrus reticulata Blanco cv. Kinokuni), Xunwu mandarins (Citrus reticulata Blanco), Yangshuo kumquats (Citrus japonica Thunb) and physiologically dropped navel oranges (Citrus sinensis Osbeck cv. Newhall) were used as materials to extract peel essential oils (EOs) via hydrodistillation. The chemical composition, and antibacterial and antioxidant activities of the EOs were investigated. GC-MS analysis showed that monoterpene hydrocarbons were the major components and limonene was the predominate compound for all citrus EOs. The antibacterial testing of EOs against five different bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) was carried out using the filter paper method and the broth microdilution method. Kumquat EO had the best inhibitory effect on B. subtilis, E. coli and S. typhimurium with MIC (minimum inhibitory concentration) values of 1.56, 1.56 and 6.25 µL/mL, respectively. All citrus EOs showed the antioxidant activity of scavenging DPPH and ABTS free radicals in a dose-dependent manner. Nanfeng mandarin EO presented the best antioxidant activity, with IC50 values of 15.20 mg/mL for the DPPH assay and 0.80 mg/mL for the ABTS assay. The results also showed that the antibacterial activities of EOs might not be related to their antioxidant activities.  相似文献   

3.
Essential oil (EO) compositions of flowers and fruits of Hypericum perforatum L. and Hypericum scabrum L. growing wild in Kashan, central Iran, were determined by simultaneous steam distillation-solvent extraction method and analysed using GC-MS technique. Analysis revealed 28 identified compounds for H. perforatum, with two main components being α-pinene (25.36%) and α-amorphene (12.12%). Thirty-five compounds were identified in H. scabrum L. representing 98.60% of the oil with α-pinene (70.21%) and p-mentha-1,5-dien-8-ol (2.89%) as main components. Some new compounds were found in significant quantities which were not found in other chemotypes. The antioxidant activities of the EOs evaluated for the first time in this study using β-carotene bleaching and DPPH assays seemed to be attributed directly to α-pinene contents in them. Antibacterial activities of both mentioned EOs were higher than that of their main constituent, α-pinene, against Staphylococcus aureus and Escherichia coli.  相似文献   

4.
We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.  相似文献   

5.
The chemical composition of the essential oil of Citrus medica L. cv. Diamante peel obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction techniques was determined by GC/MS analysis. Forty-six components were fully characterised. Limonene and γ-terpinene were the major components of the oils obtained by hydrodistillation (HD) and cold-pressing (CP), while citropten was the major constituent in the oil obtained by supercritical carbon dioxide extraction (SFE). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. The essential oil obtained by hydrodistillation exerted the highest inhibitory activity against BChE (IC?? value of 154.6 μg mL?1) and AChE (IC?? value of 171.3 μg mL?1. Interestingly, the oil obtained by cold-pressing exhibited a selective inhibitory activity against AChE. The essential oils have also been evaluated for the inhibition of NO production in LPS induced RAW 264.7 macrophages. The oil obtained by hydrodistillation exerted a significant inhibition of NO production with an IC?? value of 17 μg mL?1 (IC?? of positive control 53 μg mL?1).  相似文献   

6.
Tuberculosis (TB) is the most ancient epidemic disease in the world and a serious opportunistic disease in HIV/AIDS patients. The increase in multidrug resistant Mycobacterium tuberculosis (MDR-TB, XDR-TB) demands the search for novel antimycobacterial drugs. Essential oils (EOs) have been widely used in medicine and some EOs and their major components have been shown to be active against M. tuberculosis. The aim of this work was to evaluate the antimycobacterial and cell toxicity activities of three EOs derived from Salvia aratocensis, Turnera diffusa and Lippia americana, aromatics plants collected in Colombia. The EOs were isolated by hydrodistillation and analyzed by GC/MS techniques. The EOs were tested against 15 Mycobacterium spp using a colorimetric macrodilution method and against mammalian Vero and THP-1 cells by MTT. The activity was expressed as minimal concentration in microg/mL that inhibits growth, and the concentration that is cytotoxic for 50 or 90% of the cells (CC50 and CC90). The major components were epi-alpha-cadinol (20.1%) and 1,10-di-epi-cubenol (14.2%) for Salvia aratocensis; drima-7,9(11)-diene (22.9%) and viridiflorene (6.6%) for Turnera diffusa; and germacrene D (15.4%) and trans-beta- caryophyllene (11.3%) for Lippia americana. The most active EO was obtained from S. aratocensis, with MIC values below 125 microg mL(-1) for M. tuberculosis Beijing genotype strains, and 200 to 500 microg mL(-1) for nontuberculous mycobacterial strains. The EOs were either partially or non toxic to Vero and THP-1 mammalian cells with CC50 values from 30 to > 100 microg mL(-1), and a CC90 > 100 microg mL(-1). The EOs obtained from the three aromatic Colombian plants are an important source of potential compounds against TB. Future studies using the major EO components are recommended.  相似文献   

7.
Essential oils (EOs) and hydrolates (Hds) are natural sources of biologically active ingredients with broad applications in the cosmetic industry. In this study, nationally produced (mainland Portugal and Azores archipelago) EOs (11) and Hds (7) obtained from forest logging and thinning of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica, were chemically evaluated, and their bioactivity and sensorial properties were assessed. EOs and Hd volatiles (HdVs) were analyzed by GC-FID and GC-MS. 1,8-Cineole was dominant in E. globulus EOs and HdVs, and α- and β-pinene in P. pinaster EOs. Limonene and α-pinene led in P. pinea and C. japonica EOs, respectively. P. pinaster and C. japonica HVs were dominated by α-terpineol and terpinen-4-ol, respectively. The antioxidant activity was determined by DPPH, ORAC and ROS. C. japonica EO showed the highest antioxidant activity, whereas one of the E. globulus EOs showed the lowest. Antimicrobial activity results revealed different levels of efficacy for Eucalyptus and Pinus EOs while C. japonica EO showed no antimicrobial activity against the selected strains. The perception and applicability of emulsions with 0.5% of EOs were evaluated through an in vivo sensory study. C. japonica emulsion, which has a fresh and earthy odour, was chosen as the most pleasant fragrance (60%), followed by P. pinea emulsion (53%). In summary, some of the studied EOs and Hds showed antioxidant and antimicrobial activities and they are possible candidates to address the consumers demand for more sustainable and responsibly sourced ingredients.  相似文献   

8.
Helichrysum gymnocephalum essential oil (EO) was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%), bicyclosesquiphellandrene (5.6%), γ-curcumene (5.6%), α-amorphene (5.1%) and bicyclogermacrene (5%) were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant) and antioxidant (ABTS and DPPH assays) activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC(50) of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC(50) = 25 ± 1 mg/L). However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC(50) value > 1,000 mg/L) and ABTS (IC(50) value = 1,487.67 ± 47.70 mg/L) assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer). β-Selinene (R2 = 0.76), α-terpinolene (R2 = 0.88) and aromadendrene (R2 = 0.90) presented a higher relationship with the anti-cancer activity. However, only calamenene (R2 = 0.70) showed a significant correlation for the antiplasmodial activity.  相似文献   

9.
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex.  相似文献   

10.
The objective of this study was to assess the biological activity of essential oils (EOs) of four Juniperus species obtained via two different distillation methods and their potential as biopesticides. The studied factors were juniper species (Juniperus communis L., J. oxycedrus L., J. pygmaea C. Koch., and J. sibirica Burgsd), plant sex (male (M) and female (F)), and distillation method (hydrodistillation via a standard Clevenger apparatus (ClevA) and semi-commercial (SCom) steam distillation). The hypothesis was that the EO will have differential antioxidant, antimicrobial, and insecticidal activities as a function of plant species, plant sex, and distillation method. The two distillation methods resulted in similar EO composition within a given species. However, there were differences in the EO content (yield) due to the sex of the plant, and also differences in the proportions of some EO components. The concentration of α-pinene, β-caryophyllene, δ-cadinene and δ-cadinol was dissimilar between the EO of M and F plants within all four species. Additionally, M and F plants of J. pygmaea, and J. sibirica had significantly different concentrations of sabinene within the respective species. The EOs obtained via ClevA extraction showed higher antioxidant capacity within a species compared with those from SCom extraction. All of the tested EOs had significant repellent and insecticidal activity against the two aphid species Rhopalosiphum padi (bird cherry-oat aphid) and Sitobion avenae (English grain aphid) at concentrations of the EO in the solution of 1%, 2.5%, and 5%. The tested EOs demonstrated moderate activity against selected pathogens Fusarium spp., Botrytis cinerea, Colletotrichum spp., Rhizoctonia solani and Cylindrocarpon pauciseptatum. The results demonstrate that the standard ClevA would provide comparable EO content and composition in comparison with SCom steam distillation; however, even slight differences in the EO composition may translate into differential bioactivity.  相似文献   

11.
Cupressus sempervirens L., Juniperus communis L. and Cistus ladanifer L. are Mediterranean arboreal and shrub species that possess essential oils (EO) in their leaves and branches. This study aimed at characterizing the EOs obtained by steam distillation from the three species collected in different locations from Spain (Almazán, Andévalo, Barriomartín, Cerezal, Ermitas and Huéscar). For this purpose, volatiles composition was determined by GC-MS, and different bioactivities were evaluated. The highest content in terpenes was observed in C. sempervirens (Huéscar origin) followed by J. communis (Almazán origin), corresponding to 92% and 91.9% of total compounds, respectively. With exception of C. ladanifer from Cerezal that presented viridiflorol as the most abundant compound, all the three species presented in common the α-pinene as the major compound. The EOs from C. ladanifer showed high antibacterial potential, presenting MIC values from 0.3 to 1.25 mg/mL. Concerning other bioactivities, C. ladanifer EO revealed an oxidation inhibition of 83%, while J. communis showed cytotoxicity in the MCF-7 cell line, and C. sempervirens and C. ladanifer EOs exhibited the highest potential on NCI-H460 cell lines. Nevertheless, some EOs revealed toxicity against non-tumoral cells but generally presented a GI50 value higher than that of the tumor cell lines.  相似文献   

12.
Interest in the use of essential oils (EOs) in the biomedical and food industries have seen growing over the last decades due to their richness in bioactive compounds. The challenges in developing an EO extraction process that assure an efficient levels of monoterpenes with impact on biological activities have driven the present study, in which the EO extraction process of rosemary, lavender and citrus was performed by simultaneous hydrodistillation–steam distillation, and the influence of EO composition on biological activities, namely antioxidant, anti-inflammatory, antidiabetic, anti-acetylcholinesterase, anti-tyrosinase, antibacterial, and antibiofilm activity, were evaluated. The EO yields of combinations were generally higher than the individual plants (R. officinalis (Ro), L. angustifolia (La), and C. aurantium (Ca)) extracted by the conventional hydrodistillation. The EOs obtained by this process generally had a better capacity for scavenging the free radicals, inhibiting α-glucosidase, and acetylcholinesterase activities than the individual EOs. The combination of EOs did not improve the ability for scavenging peroxide hydrogen or the capacity for inhibiting lipoxygenase activity. The antioxidant activity or the enzyme inhibition activity could not only be attributed to their major compounds because they presented lower activities than the EOs. The chemical composition of the combination Ro:La:Ca, at the ratio 1/6:1/6:2/3, was enriched in 1,8-cineole, linalool, and linalyl acetate and resulted in lower MIC values for all tested strains in comparison with the ratio 1/6:2/3:1/6 that was deprived on those components. The biofilm formation of Gram positive and Gram negative bacteria was impaired by the combination Ro:La:Ca at a sub-inhibitory concentration.  相似文献   

13.
Laggera tomentosa Sch. Bip. ex Oliv. et Hiern (Asteraceae), an endemic Ethiopian medicinal plant, is traditionally used to treat various ailments. Previously, the chemical constituents of the essential oil (EO) of its leaves and inflorescence were documented. However, no data about the chemical compositions of other parts of the EOs of the plant have been reported to date. Moreover, there are no previous biological activity reports on any parts of the EOs of this plant. Thus, in this study, the EOs were isolated from the stem bark and roots of this plant by hydrodistillation and analyzed using gas chromatography-mass spectrometry to identify their components. In addition, antibacterial potentials of the oils were evaluated using the disc diffusion and minimal inhibitory concentration (MIC) methods. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide methods were also employed to assess their antioxidant properties. Oxygenated monoterpenes (71.82% and 77.51%), of which 2,5-dimethoxy- p -cymene (57.28% and 64.76%) and thymol methyl ether (9.51% and 8.93%) were identified as major components in the EOs of stem bark and roots of L. tomentosa and the oils, were the most potent in the DPPH (IC50, 0.33 ± 1.10 and 0.39 ± 0.97 mg/mL) assay, respectively. Moreover, the EOs demonstrated appreciable activity towards the gram+ ( S. aureus and B. cereus ) bacteria. Among these oils, the oil of the stem bark showed the greatest activity to the gram+ (MIC = 0.625 mg/mL) bacteria. Therefore, the overall results suggested that the EOs of L. tomentosa may be a promising prospect for pharmaceutical, food, and other industrial applications.  相似文献   

14.
Chemical investigations on a sponge Haliclona sp. found a meroditerpene 1 having a new carbon skeleton. By analyzing spectroscopic data, the structure was elucidated to comprise a substituted hydroquinone, a tetrahydrooxepine, and a cyclohexene, and these components were united with C1 and C2 units. Compound 1 showed moderate cytotoxicity against NBT-T2 cells with IC50 4.8 μg/ml and also antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) with IC50 3.2 μg/ml.  相似文献   

15.
The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 μmol TE/mg, FRAP = 463.97 μmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and β-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.  相似文献   

16.
Spontaneous emissions of S. dentata Aiton and S. scabra Thunb., as well as the essential oil (EO) composition of the cited species, together with S. aurea L., were investigated. The chemical profile of the first two species is reported here for the first time. Moreover, in vitro tests were performed to evaluate the antifungal activity of these EOs on Trichophyton mentagrophytes, Microsporum canis, Aspergillus flavus, Aspergillus niger, and Fusarium solani. Secondly, the EO antibacterial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus pseudointermedius was examined, and their antiviral efficacy against the H1N1 influenza virus was assessed. Leaf volatile organic compounds (VOCs), as well as the EOs obtained from the arial part of Salvia scabra, were characterized by a high percentage of sesquiterpene hydrocarbons (97.8% and 76.6%, respectively), mostly represented by an equal amount of germacrene D (32.8% and 32.7%, respectively). Both leaf and flower spontaneous emissions of S. dentata, as well as the EO composition, showed a prevalence of monoterpenes divided into a more or less equal amount of hydrocarbon and oxygenated compounds. Interestingly, its EO had a non-negligible percentage of oxygenated sesquiterpenes (29.5%). S. aurea EO, on the contrary, was rich in sesquiterpenes, both hydrocarbons and oxygenated compounds (41.5% and 33.5%, respectively). S. dentata EO showed good efficacy (Minimal Inhibitory Concentration (MIC): 0.5%) against M. canis. The tested EOs were not active against E. coli and S. aureus, whereas a low inhibition of S. dentata EO was observed on S. pseudointermedius (MIC = 10%). Once again, S. dentata EO showed a very good H1N1 inhibition; contrariwise, S. aurea EO was completely inactive against this virus. The low quantity of S. scabra EO made it impossible to test its biological activity. S. dentata EO exhibited interesting new perspectives for medicinal and industrial uses.  相似文献   

17.
Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC?? = 4.6 (±0.23) μM in the MTT assay; IC?? = 5.20 (±0.01) μM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC?? = 35.0 (±0.09) μM for MTT assay; IC?? = 32.5 (±0.04) μM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC?? after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 μL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.  相似文献   

18.
The phytotoxicity and eco-compatibility of essential oils (EOs) from Eucalyptus gunnii (EG) and E. pulverulenta ‘Baby Blue’ (EP), cultivated in Italy for their cut foliage, were investigated. Leaf micromorphology, EOs phytochemical characterization, and phytotoxicity were analysed. EP revealed a significantly higher oil gland density and a higher EO yield with respect to EG. In both EOs, 1,8-cineole was the major compound (~75%), followed by α-pinene in EG (13.1%) and eugenol in EP (7.5%). EO phytotoxicity was tested on both weeds (Lolium multiflorum, Portulaca oleracea) and crops (Raphanus sativus, Lactuca sativa, Lepidium sativum, Solanum lycopersicum, Pisum sativum, Cucumis sativus). EG EO inhibited germination of P. oleracea, R. sativus, and S. lycopersicum seeds (ranging from 61.5 to 94.6% for the higher dose used), while affecting only radical elongation in S. lycopersicum (ranging from 66.7 to 82.6%). EP EO inhibited germination of P. oleracea and R. sativus (ranging from 41.3 to 74.7%) and affected radical elongation of L. sativum and L. multiflorum (ranging from 57.4 to 76.0%). None of the EOs affected the germination and radical growing of L. sativa, P. sativum, and C. sativus. Moreover, EP EO was more active than EG EO in inhibiting α-amylase, a key enzyme for seed growth regulation. Brine shrimp lethality assay showed that both EOs are safe for aquatic organisms, suggesting their high eco-compatibility. The data collected provide useful information for future applications of these EOs in agriculture as safe and selective bioherbicides.  相似文献   

19.
We describe the design, synthesis and biological evaluation of conformationally-locked 5'-acyl sulfamoyl adenosine derivatives as new parasitic inhibitors against Trypanosoma and Leishmania. The conformationally-locked (3'-endo, North-type) nucleosides have been synthesized by covalently attaching a 4'-CH(2)-O-2' bridge () across C2'-C4' of adenosine in order to reduce the conformational flexibility of the pentose ring. This is designed to decrease the entropic penalty for complex formation with the target protein, which may improve free-energy of stabilization of the complex leading to improved potency. Conformationally-locked 5'-acyl sulfamoyl adenosine derivatives (16-22) were tested against parasitic protozoans for the first time in this work, and showed potent inhibition of Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma rhodesiense and Leishmania infantum with IC(50) = 0.25-0.51 μM. In particular, the potent 5'-pentanyl acyl sulfamoyl adenosine derivative 17 (IC(50) = 0.25 μM) against intracellular L. infantum amastigotes and Trypanosoma subspecies is interesting in view of its almost insignificant cytotoxicity in murine macrophage host cells (CC(50) >4 μM) and in diploid human fibroblasts MRC-5 cell lines (CC(50) 4 μM). This work also suggests that variable alkyl chain length of the acyl group on the acylsulfamoyl side chain at 5' can modulate the toxicity of 5'-O-sulfamoylnucleoside analogues. This conformationally-locked sulfamoyl adenosine scaffold presents some interesting possibilities for further drug design and lead optimization.  相似文献   

20.
Food poisoning is a common cause of illness and death in developing countries. Essential oils (EOs) could be effective and safe natural preservatives to prevent and control bacterial contamination of foods. However, their high sensitivity and strong flavor limit their application and biological effectiveness. The aim of this study was firstly the chemical analysis and the antimicrobial evaluation of the EOs of Origanum onites L. and Satureja thymbra L. obtained from Symi island (Greece), and, secondly, the formulation of propylene glycol-nanovesicles loaded with these EOs to improve their antimicrobial properties. The EOs were analyzed by GC-MS and their chemical contents are presented herein. Different nanovesicles were formulated with small average sizes, high homogeneity, and optimal ζ-potential. Microscopic observation confirmed their small and spherical shape. Antibacterial and antifungal activities of the formulated EOs were evaluated against food-borne pathogens and spoilage microorganisms compared to pure EOs. Propylene glycol-nanovesicles loaded with O. onites EO were found to be the most active formulation against all tested strains. Additionally, in vitro studies on the HaCaT cell line showed that nanovesicles encapsulated with EOs had no toxic effect. The present study revealed that both EOs can be used as alternative sanitizers and preservatives in the food industry, and that their formulation in nanovesicles can provide a suitable approach as food-grade delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号