首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘贵斌  刘邦贵 《中国物理 B》2009,18(11):5047-5054
We study (Ga, Mn)As diluted magnetic semiconductors in terms of the Ruderman--Kittel--Kasuya--Yosida quantum spin model in Green's function approach. Random distributions of the magnetic atoms are treated by using an analytical average of magnetic configurations. Average magnetic moments and spin excitation spectra as functions of temperature can be obtained by solving self-consistent equations, and the Curie temperature TC is given explicitly. TC is proportional to magnetic atomic concentration, and there exists a maximum for TC as a function of carrier concentration. Applied to (Ga, Mn)As, the theoretical results are consistent with experiment and the experimental TC can be obtained with reasonable parameters. This modelling can also be applied to other diluted magnetic semiconductors.  相似文献   

2.
The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.  相似文献   

3.
Luminescence intensity of CdS:Mn/ZnS core-shell quantum dots (QDs) can be strongly enhanced in comparison with bulk CdS:Mn and nanoparticles, while the luminescence due to the surface state is greatly suppressed by a capping ZnS shell We find that with the increasing temperature, the peak position of CdS:Mn/ZnS core-shell QDs blue shifts due to the reduction of phonon coupling. Unlike the bulk CdS:Mn, the luminescence of the core-shell QDs is less sensitive to thermal quenching.  相似文献   

4.
A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn_2Ge_2. Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn_2Ge_2. Variations of external magnetic field and temperature give rise to the first-order or second-order magnetic transitions from one phase to another. Based on this model, the magnetic curves of GdMn_2Ge_2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained. Based on the calculation, the H-T magnetic phase diagrams of GdMn_2Ge_2 are depicted. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated. It is shown that, in order to describe the magnetic properties of GdMn_2Ge_2, the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.  相似文献   

5.
For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.  相似文献   

6.
We study the multiband non-thermal emission from two pulsar wind nebulae (PWNe), the Crab nebula and the PWN in MSH 15-52. Both of them have been recently detected by the Fermi large area telescope (LAT) and powered by central gamma-ray pulsars. Motivated by the Fermi LAT results, we use a simplified time-dependent injection model to study the non-thermal emission from radio to very high energy gamma-ray radiation from these two sources. In this model, the relativistic electrons are accelerated in pulsar magnetosphere and at pulsar wind termination shocks and can be described by a broken power law. Those high energy particles evolve with time and produce non-thermal emission through synchrotron radiation and inverse Compton scattering of soft photons. For Crab nebula, using the GeV emission from 100 MeV to 10 GeV given by Fermi LAT, we can constrain the maximum energy of the electrons and other parameters. The non-thermal emission can be well explained by this model. We also use this model to explain the non-thermal emission from the PWN in MSH 15-52.  相似文献   

7.
This paper reports that high quality CuGeO3 single crystals were successfully grown by floating-zone technique and the magnetic property was studied. The temperature dependence of magnetic susceptibility below the spin-Peierls (SP) transition temperature (Tsp) under magnetic fields applying along both the a- and c-axis direction can be fitted well by a model of noninteracting dimmers. The spin gap derived from the fitting is consistent with other reports. There is a very weak anisotropy in the fitting parameters for different directions, which should be expected from a SP system. A small upturn in susceptibility at low temperature due to paramagnetic impurities and/or defects can be observed. A suppression of the upturn by magnetic field is first discovered in this system and the possible origins for this suppression are discussed.  相似文献   

8.
<正>Ion pickup by a monochromatic low-frequency Alfven wave,which propagates along the background magnetic field,has recently been investigated in a low beta plasma(Lu and Li 2007 Phys.Plasmas 14 042303).In this paper, the monochromatic Alfven wave is generalized to a spectrum of Alfven waves with random phase.It finds that the process of ion pickup can be divided into two stages.First,ions are picked up in the transverse direction,and then phase difference(randomization) between ions due to their different parallel thermal motions leads to heating of the ions.The heating is dominant in the direction perpendicular to the background magnetic field.The temperatures of the ions at the asymptotic stage do not depend on individual waves in the spectrum,but are determined by the total amplitude of the waves.The effect of the initial ion bulk flow in the parallel direction on the heating is also considered in this paper.  相似文献   

9.
吕琰  宋涛 《中国物理 B》2013,(4):537-544
Many animal species have been proven to use the geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception. The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions. Therefore, in the proposed model, the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection. The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions. The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparam- agnetic particles, and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180 when the magnetic particles are ferromagnetic materials, consistent with the experimental results obtained from the avian magnetic compass. Further, the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.  相似文献   

10.
A theoretical model is established to simulate the penetration process of C20 clusters in oxides (Al2O3, SiO2) at different incident velocities. The induced spatial potential by the incident clusters is described by the dielectric response formalism, in which the Mermin-type dielectric function is adopted to provide a realistic evaluation of the electronic properties of the oxides. The charge distribution of individual ions is derived by using the Brandt-Kitagawa effective charge model, also under the consideration of the asymmetric influence from the wake potential. The stopping power of the clusters and the Coulomb explosion processes are derived by solving the motion equation of the individual ions, when taking into account the multiple scattering effect simulated by using the Monte Carlo method. It is found that the dynamical interaction potential between ions leads to a spatial asymmetry to the cluster structure and the charge distribution for high velocity clusters, and will not be in effect as the incident velocities decrease.  相似文献   

11.
Co(Ⅱ) doped Zn Te nanowires are prepared by a thermal evaporation method. The power and temperature dependent micro-photoluminescence spectra of single nanowire demonstrate the double bands near its band edge,and the ferromagnetism behavior for these nanowires is identified. The occurrence of excitonic magnetic polaron(EMP) can account for the second emission band for its higher binding energy and ferromagnetic coupling. This EMP formation in a nanostructure will facilitate to realize magnetic modulation on confined excitons and will find new applications for spinpolarized nanophotonic devices.  相似文献   

12.
First-principles calculations have been performed on the structural, electronic, and magnetic properties of seven 3d transition-metal (TM) impurities (V, Cr, Mn, Fe, Co, Ni, and Cu) doped armchair (5,5) and zigzag (8,0) beryllium oxide nanotubes (BeONTs). The results show that there exists a structural distortion around the 3d TM impurities with respect to the pristine BeONTs. The magnetic moment increases for V- and Cr-doped BeONTs and reaches a maximum for Mn-doped BeONT, and then decreases for Fe-, Co-, Ni-, and Cu-doped BeONTs successively, consistent with the predicted trend of Hund's rule to maximize the magnetic moments of the doped TM ions. However, the values of the magnetic moments are smaller than the predicted values of Hund's rule due to the strong hybridization between the 2p orbitals of the near O and Be ions of BeONTs and the 3d orbitals of the TM ions. Furthermore, the V-, Co-, and Ni-doped (5,5) and (8,0) BeONTs with half-metal ferromagnetism and thus 100% spin polarization character are good candidates for spintronic applications.  相似文献   

13.
窦亚楠  张力 《中国物理快报》2008,25(11):4185-4188
We study the non-thermal photon emission from shell-type supernova remnants (SNRs) in the frame of a two-zone model. In this model, the sites of acceleration, escape and subsequent radiation of particles (both electron and proton) are divided into acceleration and escape zones, respectively. The particle distributions consist of two components, one is produced inside the acceleration zone, the other in the escape zone. We apply this model to two young and one old shell-type SNRs and show that the observed multi-waveband photon spectra for the three SNRs can be explained well in this model and high-energy γ-rays from these SNRs may have hadronic origins.  相似文献   

14.
The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p-d exchange-like p-p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.  相似文献   

15.
For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.  相似文献   

16.
By combining the B-spline basis set with model potential (B-spline + MP), we present oscillator strength spectra of Rydberg Li atoms in external fields. The photoabsorption spectra are analyzed. Over the narrow energy ranges considered in this paper, the structure of the spectra can be independent of the initial state chosen for a given atom. Our results are in good agreement with previous high-precision experimental data and theoretical calculations, where the R-matrix approach together with multichannel quantum defect theory (R-matrix+MQDT) was used. It is suggested that the present methods can be applied to deal with the oscillator strength spectra of Rydberg atoms in crossed electric and magnetic fields.  相似文献   

17.
覃一平 《中国物理 B》2010,19(1):19803-019803
According to recent investigations of states of quantum fields, we postulate that there exist negative energy photons in the universe. With this assumption, we find a solution of Einstein's equation without introducing the cosmological constant. A new and sizable type Ia supernovae sample is employed to perform a fit with our model and the conventional model. Both models can well account for the current type Ia supernovae observation and they are not distinguishable. With the new model, the cause of the accelerated expansion of the universe and the mechanism of the negative pressure existing in outer space can be explained in ordinary physical terms.  相似文献   

18.
The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spin-spin interaction and the inhomogeneous magnetic fields. The larger the Ji (i-axis spin-spin interaction), the higher critical value the Bi (i-axis uniform magnetic field) has. Moreover, in the weak-field regime, the larger Ji corresponds to more entanglement, while in the strong-field regime, different Ji correspond to the same entanglement. In addition, it is found that with the increase of Ji, the concurrence can approach the maximum value more rapidly for the smaller Bi, and can reach a larger value for the smaller bi (i-axis nonuniform magnetic field). So we can get more entanglement by increasing the spin-spin interaction Ji, or by decreasing the uniform magnetic field Bi and the nonuniform magnetic field hi.  相似文献   

19.
ZnO and Mn-doped ZnO polycrystalline films are prepared by plasma enhanced chemical vapour deposition at low temperature (220℃), and room-temperature photoluminescence of the films is systematically investigated. Analysis from x-ray diffraction reveals that a11 the prepared films exhibit the wurtzite structure of ZnO, and Mndoping does not induce the second phase in the films. X-ray photoelectron spectroscopy confirms the existence of Mn^2+ ions in the films rather than metalic Mn or Mn^4+ ions. The emission efficiency of the ZnO film is found to be dependent strongly on the post-treatment and to degrade with increasing temperature either in air or in nitrogen ambient. However, the enhancement of near band edge (NBE) emission is observed after hydrogenation in ammonia plasma, companied with more defect-related emission. Furthermore, the position of NBE shifts towards to high-energy legion with increasing Mn-doped concentration due to Mn incorporation into ZnO lattice.  相似文献   

20.
A CdS:CdO/Si multi-interface nanoheterostructure array (CdS:CdO/Si-NPA) is prepared by a chemical bath deposition method, and three emission bands are observed in the as-grown CdS:CdO film. By measuring its temperature-dependent photoluminescence (PL) spectrum, the variation trends of the peak energies and intensities with temperature for the three bands are obtained. Based on the theoretical analyses and fitting results, the non-radiative recombination processes corresponding to the PL quenching for the three emission bands are attributed to the thermally activated transition between heavy-hole and light-hole levels (at low temperature) and the thermal escape due to the scattering from longitudinal optical phonons (at high temperature), the transition from acceptor levels to surface states, and the transition related to surface defect states, respectively. The clarification of the non-radiative recombination processes in CdS:CdO/Si-NPA might provide useful information for promoting the performance of optoelectronic devices based on CdS/Si nanoheterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号