首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyricacid methyl ester(PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing(vapor drying device) and only a normal thermal annealing process(control device), respectively. Their power conversion efficiencies(PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process.  相似文献   

2.
马良 《中国物理快报》2010,27(12):203-206
The effect of annealing on the microstructure and electrical characteristics of poly (3-hexylthiophene) (P3HT) films doped with very small amounts of the electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is studied. X-ray diffraction and UV-vis spectrum studies show that unlike the pure P3HT film, the thermal treatment on the doped fihns under an Ar atmosphere can effectively enhance the crystalline order of P3HT films, as well as successfully facilitate the orientation of the polymer chains. This improvement is attributed to the electrostatic force between P3HT and F4-TCNQ molecules. This force induces the polymer chains to crystallize and orient during the annealing process. As a result, annealing significantly improves performance, especially for the Ion/Ioff ratio of the TFTs based on the doped P3HT films.  相似文献   

3.
Polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) 1:1 weight-ratio blend are reported. The effects of various annealing treatments on the device performance are investigated. Thermal annealing shows significant improvement of the device performances. For devices at 130℃ annealing, maximum power conversion efficiency (PCE) of 3.3% and All factor up to 60.3% is achieved under air mass 1.5, 100 m W/cm^2 illumination. We discuss the effect of thermal annealing by the results of ultraviolet-visible absorption spectroscopy (UV-vis), dark current-voltage curve, atomic force microscopy (AFM).  相似文献   

4.
The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca)3phen ultrathin films. The modification of the Tb(aca)3phen ultrathin film between the indium tin oxide(ITO) anode and the PEDOT:PSS layer resulted in a maximum power conversion efficiency(PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density(Jsc). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca)3phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca)3phen ultrathin film. The ultraviolent–visible absorption spectra,atomic force microscope(AFM), and X-ray diffraction(XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca)3phen in P3HT:PCBM solar cells led to about a 12% PCE increase.  相似文献   

5.
The ternary blend films have been fabricated via adding 4,4’-N,N’-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C 61-butyric acid methyl ester(P3HT:PCBM).Despite the wide bandgap(3.1 eV) of the CBP,the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film.This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM.We provide a simple,effective way to improve the performance of P3HT based bulk heterojunction solar cells.  相似文献   

6.
In this paper, we report a high-performance P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer. The grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of crystallinity, a higher absorption efficiency, and better phase separation, which together account for the higher charge transport properties and photovoltaic cell performance.  相似文献   

7.
The performance and morphology stability of polymer bulk heterojunction solar cells based on poly(3-hexylthiophene)(P3HT) as the donor and indene-C_(60) bisadduct(ICBA) or methanofullerene[6,6]-phenyl C_(61)-butyric acid methyl ester(PCBM) as the acceptor are compared.Effect of the different donor and acceptor weight ratios on photovoltaic performance of the P3HT:ICBA device is studied.The optimal device achieved power conversion efficiency of 5.51%with J_(sc) of 10.86 mA/cm~2,V_(oc) of 0.83 V,and fill factor(FF) of 61.1%under AM 1.5G(100mW/cm~2)simulated solar illumination.However,the stability measurement shows that cells based on P3HT:ICBA are less stable than those of the device based on P3HT:PCBM.Atomic force microscope results reveal that the morphology of the P3HT:ICBA film changed considerably during the storage periods due to unstable interpenetrating D-A network.This observation can be explained by the fact that there is lack of intermolecular hydrogen bonds in the P3HT:ICBA system.However,in the P3HT:PCBM system the molecules in the blend film are firmly held together in the solid state by means of intermolecular hydrogen bonds originating from C-H… Os bonds(where Os comes from the singly-bonded O atom of PCBM),forming a stable three-dimensional network.The measured PL decay lifetimes for P3HT:PCBM and P3HT:ICBA systems are 33.66 ns and 35.34 ns,respectively,indicating that the P3HT:ICBA system has a less efficient exciton separation efficiency than that of P3HT:PCBM,which may result in the interfacial photogenerated charges accumulated on the D:A interface.Such progressive phase segregation between P3HT and ICBA eventually leads to the degradation in performance and deteriorates the stability of the device.We also present an approach to enhance the stability of P3HT:ICBA systems by adding PCBM as the second acceptor.Our results show that by carefully tuning the contents of PCBM as the second acceptor,more stable polymer solar cells can be obtained.  相似文献   

8.
马良 《中国物理快报》2010,27(11):162-165
Effects of dopant properties on microstructures and the electrical characteristics of poly (3-hexylthiophene) (P3HT) films are studied by doping 0.1 wt% 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4?TCNQ), 6,6-phenyl-C61butyric acid methyl ester (PCBM) and N,N'?Diphenyl-N,N'-(m-tolyl)-benzidine (TPD) into P3HT, respectively. The introductions of various dopants in small quantities increase the field-effect mobility and the I on/Ioff ratio of P3HT thin-film transistors. However, each of dopants shows various effects on the crystalline order and the molecular orientation of P3HT films and the performance of P3HT thin-film transistors. These can be attributed to the various size, shape and energy-level properties of the dopants.  相似文献   

9.
In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17×10^ - 2~m2/(V.s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150~℃ for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00×10^ - 2 ~cm2/(V.s).  相似文献   

10.
The effects of annealing rate and morphology of sol–gel derived zinc oxide(ZnO)thin films on the performance of inverted polymer solar cells(IPSCs)are investigated.ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs.The undulating morphologies of ZnO films fabricated at annealing rates of 10 C/min and 3 C/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 C/min.The ZnO films are characterized by atomic force microscopy(AFM),optical transmittance measurements,and simulation.The results indicate that the ZnO film formed at 3 C/min possesses a good-quality contact area with the active layer.Combined with a moderate light-scattering,the resulting device shows a 16%improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.  相似文献   

11.
In this study, we investigate some main electrical parameters of the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 bu- tyric acid methyl ester:2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane/n-type silicon (Au/P3HT:PCBM:F4-TCNQ/n- Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) in terms of the effects of F4-TCNQ concentration (0%, 1%, and 2%). F4-TCNQ-doped P3HT:PCBM is fabricated to figure out the p-type doping effect on the device per- formance. The main electrical parameters, such as ideality factor (n), barrier height (ФB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) are determined from the forward and reverse bias current-voltage (l-V) characteristics in the dark and at room temperature. The values of n, Rs, ФB0, and Nss are significantly reduced by using the 1% F4-TCNQ doping in P3HT:PCBM:F4-TCNQ organic blend layer, additionally, the carrier mobility and current are increased by the soft (1%) doping. The most ideal values of electrical parameters are obtained for 1% F4-TCNQ used diode. On the other hand, the carrier mobility and current for the hard doping (2%) become far away from the ideal diode values due to the unbalanced generation of holes/electrons and doping-induced disproportion when compared with 1% F4-TCNQ doping. These results show that the electrical properties of MPS SBDs strongly depend on the F4-TCNQ doping and doping concentration of interfacial P3HT:PCBM:F4-TCNQ organic layer. Moreover, the soft F4-TCNQ dop- ing concentration (1%) in P3HT:PCBM:F4-TCNQ organic layer significantly improves the electrical characteristics of the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) SBDs which enables the fabricating of high-quality electronic and optoelectronic devices.  相似文献   

12.
ZnO thin films were synthesised by a new method which uses polyvinyl alcohol (PVA) as the polymer precursor. The films are annealed at different temperatures and for different annealing times. The structural parameters, like grain size, lattice constants, optical band gap, and Urbach energy, depend on the annealing temperature and time. All the films possess tensile strain, which relaxes as the annealing temperature and time increase. The photoluminescence (PL) spectra contain only ultraviolet (UV) peaks at low temperature, but as the annealing temperature and time increase, we observe peaks at the blue and green regions with a variation in the intensities of these peaks with annealing temperature and time.  相似文献   

13.
To obtain high carrier mobility, better charge injection capability, and high photovoltaic device conversion efficiency, a powerful strategy is to improve the morphology of the polymer/dye composite films. Conjugated conducting polymer (CP) thin films doped with perylene derivative (PV) of various concentrations were prepared by spin-casting method, and their morphology and photovoltaic characteristics were examined. The change in morphology and molecular reorientation occurring in CP-PV composite films upon annealing at different temperatures was investigated using scanning electron microscopy, x-ray diffraction, Fourier transform infrared and UV-vis absorption. By changing the annealing temperature, PV microcrystallines of 8-10μm in size lying parallel to the substrate surface can be obtained. Annealing effect improved the photovoltaic performance of ITO/CP-PV/Al Schottky-type solar cells, which can be attributed to the formation of an electron conducting PV crystal network. Preliminary studies indicate that the morphological structure in CP-PV composite films has an important influence to their photovoltaic properties.  相似文献   

14.
Nitrogen-doped ZnO (ZnO:N) films are prepared by thermal oxidation of sputtered Zn3N2 layers on A1203 substrates. The correlation between the structural and optical properties of ZnO:N films and annealing temperatures is investigated. X-ray diffraction result demonstrates that the as-sputtered Zn3N2 films are transformed into ZnO:N films after annealing above 600℃. X-ray photoelectron spectroscopy reveals that nitrogen has two chemical states in the ZnO:N films: the No acceptor and the double donor (N2)o. Due to the No acceptor, the hole concentration in the film annealed at 700℃ is predicted to be highest, which is also confirmed by Hall effect measurement. In addition, the temperature dependent photoluminescence spectra allow to calculate the nitrogen acceptor binding energy.  相似文献   

15.
High-temperature annealing of the atomic layer deposition (ALD) of Al2O3 films on 4H-SiC in O 2 atmosphere is studied with temperature ranging from 800℃ to 1000℃. It is observed that the surface morphology of Al2O3 films annealed at 800℃ and 900℃ is pretty good, while the surface of the sample annealed at 1000℃ becomes bumpy. Grazing incidence X-ray diffraction (GIXRD) measurements demonstrate that the as-grown films are amorphous and begin to crystallize at 900℃. Furthermore, C-V measurements exhibit improved interface characterization after annealing, especially for samples annealed at 900℃ and 1000℃. It is indicated that high-temperature annealing in O2 atmosphere can improve the interface of Al2O3 /SiC and annealing at 900℃ would be an optimum condition for surface morphology, dielectric quality, and interface states.  相似文献   

16.
FePt films with a high degree of order S of the L10 structure (S 〉 0.90) and well defined [001] crystalline growth perpendicular to the film plane are fabricated on thermally oxidized Si substrates by the addition of ZnO and a successive rapid thermal annealing (RTA) process. The optimum condition to prepare high-ordering L10 FePtZnO films is 20 vol% ZnO addition and 450 ℃ annealing. The effect of the ZnO additive on the ordering process of the L10 FePtZnO films is discussed. In the annealing process, Zn atoms move to the film surface and evaporate. The motion of the Zn atoms accelerates the intergrain exchange and decreases the ordering temperature.  相似文献   

17.
Sol-gel TiO2 films are prepared by the dip-coating method and the spin-coating method, and then annealing is performed at different temperatures. The structures, optical properties, surface morphologies, absorption and laser-induced damage threshold (LIDT) at 1064 nm and 12 ns of the films are investigated. The results show that the dip-coating method can be used to obtain a higher LIDT than the spin-coating method. When the annealing temperature increases from 80℃ to 120℃, the dip-coated film obtains a higher LIDT, whereas the spin-coated film obtains a lower LIDT. In addition, the damage morphology is a spalling pit for the dip-coated film annealed at 80℃. When the annealing temperature increases to 120℃, it shows a melting area. For both the spin-coated films annealed at different temperatures, the damage morphologies are the combination of spelling and melting. The differences in LIDT and damage morphologies of the films are discussed.  相似文献   

18.
王桃红  陈长博  郭坤平  陈果  徐韬  魏斌 《中国物理 B》2016,25(3):38402-038402
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester(P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer(CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode(OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs_2CO_3, bathophenanthroline(Bphen), and 8-hydroxyquinolatolithium(Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies(PCEs) of 3.0%–3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs_2CO_3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.  相似文献   

19.
With the aim of understanding the relationships between organic small molecule field-effect transistors (FETs) and organic conjugated polymer FETs, we investigate the thickness dependence of surface morphology and charge carrier mobility in pentacene and regioregular poly (3-hexylthiophene) (RR-P3HT) field-effect transistors. On the basis of the results of surface morphologies and electrical properties, we presume that the charge carrier mobility is largely related to the morphology of the organic active layer. We observe that the change trends of the surface morphologies (average size and average roughness) of pentacene and RR-P3HT thin films are mutually opposite, as the thickness of the organic layer increases. Further, we demonstrate that the change trends of the field-effect mobilities of pentacene and RR-P3HT FETs are also opposite to each other, as the thickness of the organic layer increases within its limit.  相似文献   

20.
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号