首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
顾春  许立新  明海 《中国物理快报》2008,25(6):2045-2047
We report a novel single-frequency fibre ring laser using self-injection locking with a distributed-feedback (DFB) fibre laser at 1550nm. The operating wavelength is controlled by a saturable absorber and a DFB fibre laser in the ring cavity, the saturable absorber acts as a narrow band-pass filter. In the primary experiment, the laser output exceeds 100mW with the linewidth less than 2kHz. The laser is stable, and no mode-hopping is observed within eight hours. Compared with other cavity designs using spatial hole-burning, our laser shows high controllability.  相似文献   

2.
We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-l, 4- phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd:YAG pulsed laser. The devices show a laser threshold as low as 7n J/pulse.  相似文献   

3.
The distinct period doubling behaviour in a 10 GHz gain-switched (GS) DFB laser is experimentally investigated in frequency domain and in time domain. The period doubling occurs as the frequency of the rf driving signal is close to or higher than the-3 dB cutoff frequency of the DFB laser diode, and the amplitude of the rf driving signal required to achieve period doubling increases linearly with the increasing bias current of the laser diode.  相似文献   

4.
Usually GaAs/AlGaAs is utilized as an active layer material in laser diodes operating in the spectral range of 800--850 nm. In this work, in addition to a traditional unstrained GaAs/AlGaAs distributed feedback (DFB) laser diode, a compressively strained InGaAlAs/AlGaAs DFB laser diode is numerically investigated in characteristic. The simulation results show that the compressively strained DFB laser diode has a lower transparency carrier density, higher gain, lower Auger recombination rate, and higher stimulated recombination rate, which lead to better a device performance, than the traditional unstrained GaAs/AlGaAs DFB laser diode.  相似文献   

5.
A novel ridge-waveguide multisection (MS) distributed feedback (DFB) laser, which consists of two identical DFB sections but different ridge widths, is proposed to generate beating-type self-pulsations (SPs). The spatiotemporal dynamic response of such a multisection DFB laser is calculated based on a large-signal travelling-wave model. Self-pulsating output at about 150GHz is predicted, and evidences for the beating mechanism of the SPs are provided. To the best of our knowledge, this is the first report on SP generated by MS-DFB lasers with varied ridge width. Compared to other alternatives, such devices are much easier to implement and also enjoy the advantages of lower cost and higher design freedom.  相似文献   

6.
Quantum communication is a new technology requiring a stable and reliable laser source for communication security. A new kind of polarization-locked vertical-cavity surface-emitting laser (VCSEL) with polarization maintaining (PM) fiber pigtail is fabricated as a decoy state laser source. The VCSEL is packaged in a standard butterfly box integrated with thermoelectric coder (TEC) and thermistor. The optical pulse width of full-width at half-maximum (FWHM) is smaller than 400 ps with a 100-MHz on/off modulation frequency. The results reveal that modulation range is better than 4. Moreover, the polarization is stable, and the power extinction ratio is larger than 25. The center wavelength is 850 nm, and the SMSR is better than 40 dB.  相似文献   

7.
We experimentally demonstrated that the distributed feedback(DFB) lasers with the active distributed reflector achieved a 25.8 Gb/s operation over a wide temperature range of -40 to 85℃. The DFB lasers can achieve additional feedback from an active distributed reflector with accurately controlled phase, and single-mode yields are not related to the position of cleave. The threshold currents of the fabricated laser are 6 mA and 20 mA at -40℃ and 85℃, respectively. The side mode suppression ratio of the fabricated laser is above 50 dB at all temperatures. Transmissions of 25.8 Gb/s after 10 km single-mode fibers with clear eye openings and less than 0.8 dB power penalty over a wide temperature range have been demonstrated as well.  相似文献   

8.
We experimentally generate high dimension chaotic waveforms with smooth spectrum using a distributed feedback (DFB) semiconductor laser with unidirectional fibre ring long-cavity feedback, and implement the stable chaos synchronization when the chaotic light is injected into a solitary DFB laser diode. The synchronization quality is investigated by time-domain and frequency-domain analysis separately, The frequency-domain analysis indicates that the synchronization has higher quality in the high frequency band. The influences of the injection strength and the frequency detuning on the synchronization are measured. Our experimental results show that the robust synchronization can be maintained with the optical frequency detuning from -11GHz to 40 GHz.  相似文献   

9.
The quantum cascade laser (QCL), a potential laser source for mid-infrared applications, has all of the advantages of a semiconductor laser, such as small volume and light weight, and is driven by electric power. However, the optical power of a single QCL is limited by serious self-heating effects. Therefore, beam combination technology is essential to achieve higher laser powers. In this letter, we demonstrate a simple beam combination scheme using two QCLs to extend the output peak power of the lasers to 2.3 W. A high beam combination efficiency of 89% and beam quality factor of less than 5 are also achieved.  相似文献   

10.
We demonstrate a tunable wavelength-locked seed laser source with high-frequency stability to realize the precise measurements of global atmospheric wind field. An Nd:YAG laser at 1 064 nm is used as the master laser (ML). Its frequency is locked to a confocal Fabry-Perot interferometer by using the Pound-Drever- Hall method, which ensures the peak-to-peak value of its frequency drifts less than 180 kHz over 2 h. Another Nd:YAG laser at 1 064 nm, as the slave laser, is offset-locked to the above ML using optical phase locked loop, retaining virtually the same absolute frequency stability as the ML. The tunable ranges of the frequency differences between two lasers are up to 3 GHz, and the tuning step length was an arbitrary integral multiple of 200 kHz. The researched seed laser source is compact and robust, which can well satisfy the requirement of the Doppler wind lidar.  相似文献   

11.
We report a high-power thin Nd:YAG slab laser with slab dimension of 1 × 10 ×60 (mm) partially edgepumped by diode laser arrays. Passive Q-switching is achieved with a Cr^4+ :YAG microchip adopted as the saturable absorber mirror. The pulse duration is around 10 ns while the pulse repetition rate is higher than 10 kHz. The average output power of 70 W is obtained with a slope efficiency of 36%. The diffraction limited beam quality in the thickness direction is obtained by controlling the pump beam diameter inside the slab. The laser head is very compact with size of only 60 × 74×150 (mm).  相似文献   

12.
A 7.8-$\mu $m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet--Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22{\%} and a low threshold gain of 10~cm$^{ - 1}$. Using a {$\pi $} phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.  相似文献   

13.
A novel integratable and high speed InGaAsP multi-quantum well (MQW) complex-coupled distributed feedback (DFB) laser is successfully fabricated on a semi-insulating substrate. The fabricated ridge DFB laser exhibits a threshold current of 26 mA, a slope efficiency of 0. 14 W·A^-1 and a side mode suppression ratio of 40 dB together with a 3 dB bandwidth of more than 8 GHz. The device is suitable for 10 Gbit/s optical fiber communication.  相似文献   

14.
A highly efficient cascaded P-doped Raman fiber laser(RFL)pumped by a 1064-nm continuous wave (CW)Nd:YVO_4 solid-state laser is reported.1.15-W CW output power at 1484 nm is obtained while the input pump power is 4 W,corresponding to the power conversion efficiency of 28.8%.The threshold pump power for the second-order Stokes radiation is 1.13 W.The slope efficiency is as high as 42.6%.The experimental results are in good agreement with theoretical ones.Furthermore,the power instability of the P-doped RFL at 1484 nm in an hour is observed to be less than 5%.  相似文献   

15.
A GaAs based high power distributed feedback (DFB) semiconductor laser with a second-order grating has been demonstrated. An output power of 150row at an injection current of 350mA is realized with a 1-mm cavity length. With a new design of the waveguide structure, the DFB laser maintains a stable single longitudinal mode around 106Ohm with a side mode suppression ratio of larger than 50dB.  相似文献   

16.
A simple and cost-effective multi-wavelength fiber ring laser based on a chirped Moire fiber grating (CMFG) and a semiconductor optical amplifier (SOA) is proposed. Stable triple-wavelength lasing oscillations at room temperature are experimentally demonstrated. The measured optical signal-to-noise ratio (SNR) reaches the highest value of 50 dB and the power fluctuation of each wavelength is less than 0.2 dB within a 1-h period. To serve as a wavelength selective element, the CMFG possesses excellent comb-like filtering characteristics including stable wavelength interval and ultra-narrow passband, and its fabrication method is easy and flexible. The lasing oscillation shows a narrower bandwidth than SOA-based multi-wavelength fiber lasers utilizing some other kinds of wavelength selective components. Methods to optimize the laser performance are also discussed.  相似文献   

17.
The theoretical analysis and experimental results of the wavelength tunability of a tandem optical parametric oscillator (TOPO) based on a single nonlinear crystal are presented.TOPO is a configuration wherein the signal laser is used as a pump laser to generate secondary optical parametric oscillator (OPO).The cascaded parametric interactions are achieved synchronously in a single-grating-period MgO doped periodically poled lithium niobate (PPMgOLN).Tunable multiple-wavelength mid-infrared (mid-IR) lasers are obtained by changing the temperature of the crystal.When the PPMgOLN crystal with a grating period of 31.2 μm is operated at 148 ℃,the dual OPOs generate an identical mid-IR laser of 2.83 μm.The secondary OPO transforms into an optical parametric amplifier,in which different frequency mixing from the signal laser results in the amplification of the idler laser in the first OPO.TOPO is a useful configuration for multiple laser output,broad tuning range,and high-efficiency mid-IR lasers.  相似文献   

18.
The CW 39.4 W all-fiber LD-clad-pumped Tm^3+-doped fiber laser output is reported with a slope efficiency of 34% in respect to the pump power. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tin-doped fiber. The reflective FBG and Tm-doped fiber end fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high power output, whereas the total spectrum width is less than 2nm at nearly 1.94μm.  相似文献   

19.
A theoretical model to simulate an end-pumped CW Nd^3+:GdVO4 laser at 1063 nm is presented. Its essence is to use the propagation equations to demonstrate the spatial evolutions of the pump and the laser powers in the cavity, hence it is applicable to both low and high gain lasers. The simulation results obtained by this model are in good agreement with the experimental observations reported in the literature for a Ti:sapphlre-pumped Nd^3+:GdVO4 laser. Moreover, some parameters, such as the reflectivity of output coupler, the spot size of laser beam and the crystal length, are discussed with a view to optimizing the laser performance.  相似文献   

20.
We propose, design, and realize a compact stabilized laser system that can be tuned within 24 GHz automatically.This laser system consists of two distributed feedback(DFB) lasers, one of which is reference and locked to the D2 line of ~(87)Rb, the other laser is a slave that is locked to the reference laser via a loop servo. We measured the frequency of the beating signal of the two lasers and generated an error signal, which controlled the frequency of the slave laser to close the loop. We compressed the fluctuation of the beating signal's frequency to less than 1 MHz.Furthermore, the system can also automatically determine and control whether the slave is red detuned or blue detuned to the reference. The dimensions of our laser system are about 15 cm × 20 cm × 10 cm. This kind of laser system can be applied in many important applications, such as atomic interferometer and cold atomic clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号