首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined whether the level effects seen in monaural intensity discrimination (Weber's law and the "near miss") in a two-interval task are also observed in discrimination of interaural intensity differences (IIDs) in a single-interval task. Both tasks were performed for various standard levels of 4-kHz pure tones and broadband noise. The Weber functions (10 log deltaI/I versus I in dB) in the monaural and binaural conditions were parallel. For noise, the Weber functions had slopes close to zero (Weber's law) while the Weber functions for the tones had a mean slope of -0.089 (near miss). The near miss for the monaural and binaural tasks with tones was eliminated when a high-pass masker was gated with the listening intervals. The near-miss was also observed for 250- and 1000-Hz tones in the binaural task despite overall decreased sensitivity to changes in IID at 1000 Hz. The binaural thresholds showed a small (about 2-dB) advantage over monaural thresholds only in the broadband noise conditions. More important, however, is the fact that the level effects seen monaurally are also seen binaurally. This suggests that the basic mechanisms responsible for Weber's law and the near miss are common to monaural and binaural processing.  相似文献   

2.
This paper investigated the influence of stimulus uncertainty in binaural detection experiments and the predictions of several binaural models for such conditions. Masked thresholds of a 500-Hz sinusoid were measured in an NrhoSpi condition for both running and frozen-noise maskers using a three interval, forced-choice (3IFC) procedure. The nominal masker correlation varied between 0.64 and 1, and the bandwidth of the masker was either 10, 100, or 1,000 Hz. The running-noise thresholds were expected to be higher than the frozen-noise thresholds because of stimulus uncertainty in the running-noise conditions. For an interaural correlation close to +1, no difference between frozen-noise and running-noise thresholds was expected for all values of the masker bandwidth. These expectations were supported by the experimental data: for interaural correlations less than 1.0, substantial differences between frozen and running-noise conditions were observed for bandwidths of 10 and 100 Hz. Two additional conditions were tested to further investigate the influence of stimulus uncertainty. In the first condition a different masker sample was chosen on each trial, but the correlation of the masker was forced to a fixed value. In the second condition one of two independent frozen-noise maskers was randomly chosen on each trial. Results from these experiments emphasized the influence of stimulus uncertainty in binaural detection tasks: if the degree of uncertainty in binaural cues was reduced, thresholds decreased towards thresholds in the conditions without any stimulus uncertainty. In the analysis of the data, stimulus uncertainty was expressed in terms of three theories of binaural processing: the interaural correlation, the EC theory, and a model based on the processing of interaural intensity differences (IIDs) and interaural time differences (ITDs). This analysis revealed that none of the theories tested could quantitatively account for the observed thresholds. In addition, it was found that, in conditions with stimulus uncertainty, predictions based on correlation differ from those based on the EC theory.  相似文献   

3.
A series of experiments was performed to examine the extent to which precision of interaural time discrimination depends on the sound-pressure level (SPL) and/or sensation level (SL) of the signal. All experiments used a tone burst signal and a continuous white noise masker, which was either diotic or interaurally phase reversed. Results of the first experiment indicate that (1) at equal signal SLs, interaural time and intensity discrimination is more precise when measured with the added diotic noise, and (2) addition of the phase reversed noise, previously shown to cause less precise interaural time discrimination, has a similar effect on interaural intensity discrimination. In the second experiment, interaural time JNDs for a signal of constant SPL were measured as a function of noise level. Results show that a low-level diotic noise can benefit interaural time discrimination, particularly at 500 Hz. The third and fourth experiments were performed to measure interaural time discrimination as a function of increasing signal SPL but constant signal-to-noise ratio. The data show the JND decreasing with increasing signal SPL at nearly the same rate with or without the added noise, indicating that an increase in signal-to-noise ratio is not necessary for improved discrimination.  相似文献   

4.
5.
6.
7.
This study examined the sensitivity of four cochlear implant (CI) listeners to interaural time difference (ITD) in different portions of four-pulse sequences in lateralization discrimination. ITD was present either in all the pulses (referred to as condition Wave), the two middle pulses (Ongoing), the first pulse (Onset), the last pulse (Offset), or both the first and last pulse (Gating). All ITD conditions were tested at different pulse rates (100, 200, 400, and 800 pulses/s pps). Also, five normal hearing (NH) subjects were tested, listening to an acoustic simulation of CI stimulation. All CI and NH listeners were sensitive in condition Gating at all pulse rates for which they showed sensitivity in condition Wave. The sensitivity in condition Onset increased with the pulse rate for three CI listeners as well as for all NH listeners. The performance in condition Ongoing varied over the subjects. One CI listener showed sensitivity up to 800 pps, two up to 400 pps, and one at 100 pps only. The group of NH listeners showed sensitivity up to 200 pps. The result that CI listeners detect ITD from the middle pulses of short trains indicates the relevance of fine timing of stimulation pulses in lateralization and therefore in CI stimulation strategies.  相似文献   

8.
In the first two articles of this series, reproducible noises with a fixed value of interaural coherence (0.992) were used to study the human ability to detect interaural incoherence. It was found that incoherence detection is strongly correlated with fluctuations in interaural differences, especially for narrow noise bandwidths, but it remained unclear what function of the fluctuations best agrees with detection data. In the present article, ten different binaural models were tested against detection data for 14- and 108-Hz bandwidths. These models included different types of binaural processing: independent-interaural-phase-difference/interaural-level-difference, lateral-position, and short-term cross-correlation. Several preprocessing transformations of the interaural differences were incorporated: compression of binaural cues, temporal averaging, and envelope weighting. For the 14-Hz bandwidth data, the most successful model postulated that incoherence is detected via fluctuations of interaural phase and interaural level processed by independent centers. That model correlated with detectability at r=0.87. That model proved to be more successful than short-term cross-correlation models incorporating standard physiologically-based model features (r=0.78). For the 108-Hz bandwidth data, detection performance varied much less among different waveforms, and the data were less able to distinguish between models.  相似文献   

9.
10.
The equalization stage in the equalization-cancellation model of binaural unmasking compensates for the interaural time delay (ITD) of a masking noise by introducing an opposite, internal delay [N. I. Durlach, in Foundations of Modern Auditory Theory, Vol. II., edited by J. V. Tobias (Academic, New York, 1972)]. Culling and Summerfield [J. Acoust. Soc. Am. 98, 785-797 (1995)] developed a multi-channel version of this model in which equalization was "free" to use the optimal delay in each channel. Two experiments were conducted to test if equalization was indeed free or if it was "restricted" to the same delay in all channels. One experiment measured binaural detection thresholds, using an adaptive procedure, for 1-, 5-, or 17-component tones against a broadband masking noise, in three binaural configurations (N0S180, N180S0, and N90S270). The thresholds for the 1-component stimuli were used to normalize the levels of each of the 5- and 17-component stimuli so that they were equally detectable. If equalization was restricted, then, for the 5- and 17-component stimuli, the N90S270 and N180S0 configurations would yield a greater threshold than the N0S180 configurations. No such difference was found. A subsequent experiment measured binaural detection thresholds, via psychometric functions, for a 2-component complex tone in the same three binaural configurations. Again, no differential effect of configuration was observed. An analytic model of the detection of a complex tone showed that the results were more consistent with free equalization than restricted equalization, although the size of the differences was found to depend on the shape of the psychometric function for detection.  相似文献   

11.
Intensity-discrimination thresholds were measured for a 25-ms, 6-kHz pure tone for pedestal levels from 40 to 90 dB sound pressure level (SPL) with and without a forward masker (100-ms narrowband Gaussian noise, N(0)=70 dB). When the masker was present, the masker and probe were separated by 100 ms of silence. Unmasked and masked thresholds were measured in a two-interval monaural procedure and, separately, in a single-interval interaural procedure in which the pedestal and incremented pedestals were presented simultaneously to opposite ears. While the monaural thresholds were elevated markedly by the forward masker for mid-level pedestals, interaural thresholds were nearly unaffected by the masker across pedestal levels. The results argue against the notion that the monaural elevation in forward-masked thresholds is due to degraded encoding of intensity information at early stages of auditory processing.  相似文献   

12.
This letter investigates the hypothesis that lateral position is the only cue available for interaural discrimination experiments using 500-Hz stimuli. The discussion of this hypothesis is in the context of comparisons of the experimental data to predictions of the "position-variable" model of binaural interaction. The model predicts the mean and variance of the subjective lateral position of stimuli used in the discrimination experiments, assuming that discrimination performance is based on optimal processing of this subjective position. To the extent that the laterality predictions of the model are accurate, data that are inconsistent with its predictions would also be problematical for any model based on the subjective laterality of a single binaural image. The predictions (at least qualitatively) describe much of the observed experimental data, including a number of results that have not been addressed by any previous theory. Nevertheless, the observed performance is significantly better than the corresponding predictions for three types of experiments in which the utility of the position cue has been eliminated by experimental design. We believe that our results indicate that changes in lateral position are the primary cue in most interaural discrimination experiments, but that secondary attributes of the perceptual images can be useful when performance based on position alone would be poor.  相似文献   

13.
Listeners detected interaural differences of time (ITDs) or level (ILDs) carried by single 4000-Hz Gabor clicks (Gaussian-windowed tone bursts) and trains of 16 such clicks repeating at an interclick interval (ICI) of 2, 5, or 10 ms. In separate conditions, target interaural differences favored the right ear by a constant amount for all clicks (condition RR), attained their peak value at onset and diminished linearly to 0 at offset (condition R0), or grew linearly from 0 at onset to a peak value at offset (condition 0R). Threshold ITDs and ILDs were determined adaptively in separate experiments for each of these conditions and for single clicks. ITD thresholds were found to be lower for 16-click trains than for single clicks at 10-ms ICI, regardless of stimulus condition. At 2-ms ICI, thresholds in RR and R0 conditions were similar to single click thresholds at 2-ms ICI; thresholds in the 0R condition were significantly worse than for single clicks at 2-ms ICI, consistent with strong rate-dependent onset dominance in listeners' temporal weighting of ITD. ILD thresholds, in contrast, were predominantly unaffected by ICI, suggesting little or no onset dominance for ILD of high-rate stimuli.  相似文献   

14.
A method-of-adjustment procedure was used to measure thresholds for detecting a continuous sequence of brief 2-kHz tonal pulses in the presence of random-frequency masking sequences. Masker pulses consisted of either one or eight sinusoidal components and were either synchronous or asynchronous with the signal pulses. Effects of pulse rate and asynchronous gating were generally consistent with a reduction in informational masking due to segregation of the signal and masker streams. Despite use of continuous stimulus presentation to encourage stream segregation, masking was still obtained from most listeners in most conditions.  相似文献   

15.
Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.  相似文献   

16.
The effect of onset interaural time differences (ITDs) on lateralization and detection was investigated for broadband pulse trains 250 ms long with a binaural fundamental frequency of 250 Hz. Within each train, ITDs of successive binaural pulse pairs alternated between two of three values (0 micros, 500 micros left-leading, and 500 micros right-leading) or were invariant. For the alternating conditions, the experimental manipulation was the choice of which of two ITDs was presented first (i.e., at stimulus onset). Lateralization, which was estimated using a broadband noise pointer with a listener adjustable interaural delay, was determined largely by the onset ITD. However, detection thresholds for the signals in left-leading or diotic continuous broadband noise were not affected by where the signals were lateralized. A quantitative analysis suggested that binaural masked thresholds for the pulse trains were well accounted for by the level and phase of harmonic components at 500 and 750 Hz. Detection thresholds obtained for brief stimuli (two binaural pulse or noise burst pairs) were also independent of which of two ITDs was presented first. The control of lateralization by onset cues appears to be based on mechanisms not essential for binaural detection.  相似文献   

17.
A commonly accepted physiological model for lateralization of low-frequency sounds by interaural time delay (ITD) stipulates that binaural comparison neurons receive input from frequency-matched channels from each ear. Here, the effects of hypothetical interaural frequency mismatches on this model are reported. For this study, the cat's auditory system peripheral to the binaural comparison neurons was represented by a neurophysiologically derived model, and binaural comparison neurons were represented by cross-correlators. The results of the study indicate that, for binaural comparison neurons receiving input from one cochlear channel from each ear, interaural CF mismatches may serve to either augment or diminish the effective difference in ipsilateral and contralateral axonal time delays from the periphery to the binaural comparison neuron. The magnitude of this increase or decrease in the effective time delay difference can be up to 400 microseconds for CF mismatches of 0.2 octaves or less for binaural neurons with CFs between 250 Hz and 2.5 kHz. For binaural comparison neurons with nominal CFs near 500 Hz, the 25-microsecond effective time delay difference caused by a 0.012-octave CF mismatch is equal to the ITD previously shown to be behaviorally sufficient for the cat to lateralize a low-frequency sound source.  相似文献   

18.
Threshold values of interaural differences of time (delta IDTs ) were measured for trains of dichotic clicks whose levels were 20, 40, or 60 dB SPL. All clicks were bandpass filtered at 4 kHz, and the number of clicks in the train (n) was 1, 2, 4, 8, 16, or 32. The interclick interval (ICI) was 5, 2, or 1 ms. Performance was compared to that of an ideal integrator of information, which produces slopes of - 0.5 when log delta IDT versus log n is plotted. The results showed that increases in level had no effect on the slopes of the log-log functions regardless of the ICI but did decrease the intercepts. Shortening the ICI caused the slopes to go from nearly - 0.5 towards 0.0. The improvement with level could be explained by either a decrease in the temporal variability of neural discharges, or by an increase in the number of samples of IDT at higher intensities brought on by increased firing rates or the activation of more auditory units. A review of the physiological literature found the most parsimonious explanation to be that the decline in threshold IDT was mediated by an increase in the number of active units, each possessing the same degree of adaptation.  相似文献   

19.
The purpose of this study was to measure listeners' abilities to detect brief changes in interaural temporal disparities (ITDs) or interaural intensitive disparities (IIDs) conveyed by bursts of noise (probes) temporally and symmetrically flanked by segments of diotic or uncorrelated noise. Thresholds were measured using a four-interval, two-alternative, forced-choice adaptive task and the total duration of the bursts of noise was either 20, 40, or 100 ms. Probes were temporally centered within each burst and the durations of the probes ranged from 2 to 100 ms, depending upon the duration of the (longer) total burst of noise within which they were embedded. The results indicate that, for a given total duration of noise, there is a rapid decrease in threshold ITD or threshold IID as the duration of the probe is increased so that it occupies a larger portion of the total burst of noise. Mathematical analyses revealed that both threshold ITDs and threshold IIDs could be well accounted for by assuming that the listener processes both types of binaural cues via a single, symmetric, double-exponential temporal window. Interestingly, the shapes of the temporal windows that fit the data obtained from the human listeners resemble the shapes of the temporal windows derived by Wagner [H. Wagner, J. Comp. Physiol. A 169, 281-289 (1991)], who studied the barn owl. The time constants and relative weightings yielded temporal window functions that heavily emphasize information occurring within the very temporal center of the window. This temporal window function was found to be generalizable in the sense that it also accounts for classic data reported by Grantham and Wightman [D.W. Gratham and F.L. Wightman, J. Acoust. Soc. Am. 63, 511-523 (1978)] concerning sensitivity to dynamically changing interaural disparities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号