首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A physical synthesis of multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts is reported for the first time. The novel nanorods were synthesized via the oblique angle deposition method, deposited prior to the formation of each individual noble metal layer, in a sequential fashion. It has been shown that the oblique angle deposition controls the morphology and electrochemical properties of the resultant nanostructures. Sequentially the multilayered nanorods comprising Pt and Ru segments exhibited superior electrocatalytic activity when compared to equivalent monometallic Pt nanorods with respect to methanol electrooxidation reaction in an acidic medium. Moreover, it has been established that the electrochemical process takes place at the Pt/Ru nanorods followed the bifunctional mechanism. The relative rates of reaction, recorded using chronoamperometry, show a linear relationship between the long-time current density and the number of Pt/Ru interfaces. Interestingly, the best catalyst for methanol oxidation was found to the surface of bimetallic Pt/Ru nanorods produced by the heat treatments via the so-called electronic effect. This reflects the fact that the ensemble effects of combined bifunctional and electronic effects via second elements could be expected in methanol oxidation reactions. Electrocatalytic activities correlate well with bimetallic pair sites and electronic properties analyzed by X-ray photoemission spectroscopy and X-ray absorption near-edge structure.  相似文献   

2.
Core/shell bimetallic nanoparticles are highly popular in electrocatalysis; it is argued that the core metal enhances the catalytic properties of the shell. We have investigated the electrocatalytic properties of Au/Ag core‐shell nanorods (Au/Ag NRs) where Ag shell was thinned by aging in the presence of cetyltrimethylammonium bromide. We observed excellent electrocatalysis toward hydrogen peroxide electroreduction upon decreasing the Ag shell thickness, which would, at first, appear to imply a strong synergistic effect of the Au core with the Ag shell for electrocatalysis. We show, however, that this electrocatalysis is not caused by particular Au/Ag core/shell structures but rather by the presence of residual silver impurities in the form of Ag nanoparticles (Ag NPs) formed during the preparation of the thin‐layer silver shell/gold core nanorods.  相似文献   

3.
Co thin films with novel hierarchical structures were controllably fabricated by simple electrochemical deposition in the absence of hard and soft templates, which were used as sacrificial templates to further prepare noble metal (Pd, Pt, Au) hierarchical micro/nanostructures via metal exchange reactions. SEM characterization demonstrated that the resulting noble metal thin films displayed hierarchical architectures. The as-prepared noble metal thin films could be directly used as the anode catalysts for the electro-oxidation of formic acid. Moreover, bimetallic catalysts (Pt/Au, Au/Pt) fabricated based on the monometallic Au, Pt micro/nanostructures exhibited the higher catalytic activity compared to the previous monometallic catalysts.  相似文献   

4.
We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.  相似文献   

5.
The mechanism of oxygen electroreduction on polycrystalline gold is studied in the acidic medium. Hydrogen peroxide is the main reaction product. However, two potential regions can be singled out in which the oxygen electroreduction reaction proceeds by different pathways. The first region is the potential interval close to the steady-state potential. Here, the oxygen electroreduction virtually completely produces peroxide. The second interval is the potential range of considerable cathodic polarization values. In this case, peroxide can be reduced to water. The low energy of hydrogen peroxide adsorption on gold determines the considerable overpotential of peroxide reduction. It is shown that on the gold electrode surface, the catalytic decomposition of peroxide occurs. The use of the method of electrochemical impedance spectroscopy allows the peculiarities of the oxygen reaction associated with hydrogen peroxide transformations to be revealed. In the acidic medium, the reactions of consecutive reduction of oxygen through the intermediate formation of hydrogen peroxide and the catalytic decomposition of the intermediate product are shown to proceed simultaneously. The ratio of rate constants of electrochemical stages depends on the potential. The chemical decomposition is observed both near the steady-state potential and in the cathodic region where considerable electrochemical reduction of peroxide occurs.  相似文献   

6.
The effect of alloying on the adsorption of atomic hydrogen was studied using density functional theory (DFT). In the study the (100) surfaces of Pd-Ag, Pd-Pt, Pd-Au, Pt-Ag, and Pt-Au alloys were considered by means of a cluster model. The structural and energetic properties of the H atom adsorbed on the Pd4Me (Me = Ag, Pt, Au) and Pt4Me (Me = Pd, Ag, Au) clusters were calculated and compared with the H-atom adsorption on monometallic clusters. The effect of alloying on the H-atom adsorption is evident for all the investigated bimetallic systems. However, it strongly depends on the second metal atom, Me, is placed in the surface layer or in the subsurface one. In general, the H atom adsorbed in a site containing the second metal exhibits different properties from those characteristic of its adsorption on Pd(100) and Pt(100). Hence, the modified interaction between atomic hydrogen and the alloyed surfaces may increase the selectivity of the catalytic hydrogenation reactions on such surfaces.  相似文献   

7.
Noble metal nanoparticles are promising catalysts in electrochemical reactions, while understanding the relationship between the structure and reactivity of the particles is important to achieve higher efficiency of electrocatalysis, and promote the development of single‐molecule electrochemistry. Electrogenerated chemiluminescence (ECL) was employed to image the catalytic oxidation of luminophore at single Au, Pt, and Au‐Pt Janus nanoparticles. Compared to the monometal nanoparticles, the Janus particle structure exhibited enhanced ECL intensity and stability, indicating better catalytic efficiency. On the basis of the experimental results and digital simulation, it was concluded that a concentration difference arose at the asymmetric bimetallic interface according to different heterogeneous electron‐transfer rate constants at Au and Pt. The fluid slip around the Janus particle enhanced local redox reactions and protected the particle surface from passivation.  相似文献   

8.
We report a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) brush functionalized Janus Au–Pt bimetallic micromotor capable of modulating the direction of motion with the change of the ambient temperature. The PNIPAM@Au–Pt micromotor moved along the Au–Pt direction with a speed of 8.5 μm s?1 in 1.5 % H2O2 at 25 °C (below the lower critical solution temperature (LCST) of PNIPAM), whereas it changed the direction of motion (i.e., along the Pt–Au direction) and the speed decreased to 2.3 μm s?1 at 35 °C (above LCST). Below LCST, PNIPAM brushes grafted on the Au side were hydrophilic and swelled, which permitted the electron transfer and proton diffusion on the Au side, and thus the motion is regarded as a self‐electrophoretic mechanism. However, PNIPAM brushes above LCST became hydrophobic and collapsed, and thus the driving mechanism switched to the self‐diffusiophoresis like that of Pt‐modified Janus silica motors. These motors could reversibly change the direction of motion with the transition of the hydrophobic and hydrophilic states of the grafted PNIPAM brushes. Such a thermoresponsive polymer brush functionalization method provides a new strategy for engineering the kinematic behavior of phoretically driven micro/nanomotors.  相似文献   

9.
Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.  相似文献   

10.
Rod-shaped particles, 370 nm in diameter and consisting of 1 microm long Pt and Au segments, move autonomously in aqueous hydrogen peroxide solutions by catalyzing the formation of oxygen at the Pt end. In 2-3% hydrogen peroxide solution, these rods move predominantly along their axis in the direction of the Pt end at speeds of up to 10 body lengths per second. The dimensions of the rods and their speeds are similar to those of multiflagellar bacteria. The force along the rod axis, which is on the order of 10(-14) N, is generated by the oxygen concentration gradient, which in turn produces an interfacial tension force that balances the drag force at steady state. By solving the convection-diffusion equation in the frame of the moving rod, it was found that the interfacial tension force scales approximately as SR(2)gamma/muDL, where S is the area-normalized oxygen evolution rate, gamma is the liquid-vapor interfacial tension, R is the rod radius, mu is the viscosity, D is the diffusion coefficient of oxygen, and L is the length of the rod. Experiments in ethanol-water solutions confirmed that the velocity depends linearly with the product Sgamma, and scaling experiments showed a strong dependence of the velocity on R and L. The direction of motion implies that the gold surface is hydrophobic under the conditions of the experiment. Tapping-mode AFM images of rods in air-saturated water show soft features that are not apparent in images acquired in air. These features are postulated to be nanobubbles, which if present in hydrogen peroxide solutions, would account for the observed direction of motion.  相似文献   

11.
The electrocatalytic activities of nanoporous palladium (npPd) and platinum (npPt) for oxygen reduction reaction (ORR) under alkaline conditions and hydrogen peroxide electrochemical reactions under neutral conditions were examined. npPd and npPt were prepared by the electrochemical deposition of each metal from the corresponding metal precursor in the presence of reverse micelles of Triton X-100, directing highly porous microstructures. The nanoporous catalysts showed excellent electrocatalytic activity for both the ORR and hydrogen peroxide electrochemical oxidation/reduction due to the increased active surface area. In particular, the npPd exhibited superior ORR activity (i.e., more positive onset and half-wave potentials, higher current density and greater number of electrons transferred) despite the smaller roughness factor than the npPt and commercial Pt. The catalytic activity for the hydrogen peroxide electrochemical reactions was also higher while using npPd (i.e., faster electrode reaction kinetics, increased current densities, etc.) compared to npPt. The higher catalytic activity of npPd than that of npPt suggests an advantage of the unique npPd structure, composed of nano- as well as micro-porosity, in facilitating mass transport through the porous metal layer. The npPd exhibited amperometric current responses, induced by the oxidation as well as reduction of hydrogen peroxide, linearly proportional to the hydrogen peroxide concentration with a rapid response time (<~2 s), high sensitivity, and low detection limit (<1.8 μM).  相似文献   

12.
采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Pt/Ni双金属纳米溶胶.采用紫外-可见光谱(UV-Vis)、透射电子显微镜(TEM)对所合成的Pt/Ni双金属纳米溶胶进行了表征, 并系统研究了PVP用量、还原剂用量和浓度、双金属比例对该双金属纳米溶胶催化剂催化性能的影响.结果表明, 所制备的双金属纳米溶胶的平均粒径在2.0 nm左右, Pt/Ni双金属纳米溶胶的催化活性比Pt及Ni单金属纳米溶胶的高, 当Pt/Ni摩尔比为1:4时, 纳米溶胶的催化活性最高, 其活性值为16640 molH2·molPt-1·h-1.所制备的Pt/Ni双金属纳米溶胶催化剂具有很好的耐久性, 5次催化实验后该催化剂仍保持较高的催化活性.该双金属纳米溶胶催化NaBH4水解反应的活化能为48 kJ/mol.  相似文献   

13.
The dispersions of polymer-protected gold/platinum bimetallic clusters were easily and reproducibly prepared by refluxing the mixed solutions of tetrachloroaureic(III) acid and hexachloroplatinic(IV) acid in ethanol/water (1/1) at 90 ∼ 95 °C for 2 h in the presence of a protective polymer such as poly(N-vinyl-2-pyrrolidone) (PVP). The gold/platinum bimetallic clusters thus obtained were very small, well dispersed and very stable. The UV-Vis spectra and the transmission electron micrographs have indicated that each bimetallic particle has an alloy structure consisting of both gold and platinum atoms, and that the surface of the cluster particle is rich in platinum atoms and the inner core in gold atoms. The gold/platinum bimetallic clusters were used as the multi-electron redox catalysts for visible light-induced hydrogen evolution from water. The rate of hydrogen evolution depended on the mole ratio of the gold/platinum bimetallic clusters. The bimetallic clusters at the mole ratio of Au/Pt = 2/3 were the most active catalyst. The in-situ UV-Vis spectra during the reaction have indicated that the order of the aggregation in the two kinds of metal atoms is very important for structure determination of the Au/Pt bimetallic clusters. The protective polymer PVP plays a role not only in protecting hydrophobic colloidal particles in an aqueous solution, but also in determining the metal composition of the cluster surface.  相似文献   

14.
Here we demonstrate that, in the dealloying process of Au–Ag nanorods, temperature is the key parameter for producing porous Au nanorods with tunable ligament sizes. The vertically aligned Au–Ag alloy nanorods were first synthesized by the electrochemical co‐deposition of Au and Ag onto anodic aluminum oxide (AAO) membrane templates. Porous Au nanorods were then obtained by selectively etching Ag away from the precursor Au–Ag alloy nanorods. Control of the ligament size was achieved by controlling the dealloying temperature. Pt deposited on the porous Au nanorods with smaller ligaments exhibited a higher catalytic activity during methanol electrooxidation than those deposited on nanorods with larger ligaments produced by dealloying at higher temperatures. The strong dependence of the catalytic activity on the ligament size of porous Au is principally due to different amounts of carbon monoxide (CO) generated during methanol electrooxidation. Less CO was generated as the ligament size decreased. This finding is of importance for developing highly efficient cathode materials for carrying out methanol electrooxidation in practical applications in which porous Au with a large surface area is used as a supporting substrate.  相似文献   

15.
In view of the recent finding that the bimetallic AuPt nanoparticles prepared by molecular-capping-based colloidal synthesis and subsequent assembly on carbon black support and thermal activation treatment exhibit alloy properties, which is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range, there is a clear need to assess the electrocatalytic properties of the catalysts prepared with different bimetallic composition and different thermal treatment temperatures. This paper reports recent results of such an investigation of the electrocatalytic methanol oxidation reaction (MOR) activities of the carbon-supported AuPt nanoparticle catalysts with different bimetallic composition and thermal treatment temperatures. Au(m)Pt(100)(-)(m) nanoparticles of 2-3 nm core sizes with different atomic compositions ranging from 10% to 90% Au (m = 10 approximately 90) have been synthesized by controlling the feeding of the metal precursors used in the synthesis. The electrocatalytic MOR activities of the carbon-supported AuPt bimetallic catalysts were characterized in alkaline electrolytes. The catalysts with 65% to 85% Au and treated at 500 degrees C were found to exhibit maximum electrocatalytic activities in the alkaline electrolytes. The findings, together with a comparison with some well-documented catalysts as well as recent experimental and theoretical modeling results, have revealed important insights into the participation of CO(ad) and OH(ad) on Au sites in the catalytic reaction of Pt in the AuPt alloys with approximately 75% Au. The insights are useful for understanding the correlation of the bifunctional electrocatalytic activity of the bimetallic nanoparticle catalysts with the bimetallic composition and the thermal treatment temperatures.  相似文献   

16.
The structural and catalytic properties of SiO2- and TiO2 -supported Pt-Au bimetallic catalysts prepared by coimpregnation were compared with those of samples of similar composition synthesized from a Pt2Au4(C{triple bond}CBut)8 cluster precursor. The smallest metal particles were formed when the bimetallic cluster was used as a precursor and TiO2 as the support. FTIR data indicate that highly dispersed Au crystallites in these samples, presumably located in close proximity to Pt, are capable of linearly coordinating CO molecules with a characteristic vibration observed at 2111 cm(-1). The cluster-derived Pt2Au4/TiO2 samples were the only ones exhibiting low-temperature CO oxidation activity, indicating that both the high dispersion of Au and the nature of the support are important factors affecting the catalytic activity for this system.  相似文献   

17.
硫化镉锌(Zn0.5Cd0.5S)纳米棒因其制备方法简单以及具有良好的光催化活性等优点,在光催化领域得到广泛的研究和应用.单一Zn0.5Cd0.5S存在光生电子与空穴易复合以及光腐蚀等问题,采用助催化剂修饰将有助于电荷分离与迁移,从而提高其光催化性能.本文将PtPd合金作为助催化剂修饰Zn0.5Cd0.5S纳米棒光催化材料,以提高可见光照射下的产氢速率,并对合金助催化剂提高催化活性的机理进行了深入研究.通过简单水热法合成Zn0.5Cd0.5S,采用化学还原沉积法制备PtPd/Zn0.5Cd0.5S复合光催化材料.XRD结果表明,成功合成了Zn0.5Cd0.5S催化剂.TEM结果表明,Zn0.5Cd0.5S呈纳米棒状,测量得到PtPd合金的(111)晶面条纹间距为0.23 nm,说明合金成功负载到硫化镉锌上.XPS结果表明,PtPd/Zn0.5Cd0.5S复合样品中Pt和Pd元素的峰值较Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S均发生了偏移,Pt和Pd元素化学结合环境发生改变,进一步证实合成了PtPd合金.光催化产氢实验结果表明,当Zn0.5Cd0.5S负载PtPd合金以后,光催化产氢速率大幅提升,其中负载量为1.0 wt%的PtPd/Zn0.5Cd0.5S复合光催化材料的产氢速率最快,达到9.689 mmol·g-1·h-1,分别是纯Zn0.5Cd0.5S,Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S的9.5,3.6和1.7倍.为了探究PtPd合金性能优于Pt的原因,本文结合化学反应热力学(DFT理论计算)和动力学(光致发光光谱、光电流响应、电化学阻抗谱和表面光电压谱)手段进行了详细研究.结果 表明,PtPd二元贵金属合金具有与Pt相近的氢活性物种吸附能和d带中心,可以大大加速电荷转移,促进电荷分离,降低H2生成的活化能.虽然Pt在热力学上有利于光催化产氢,但从催化反应动力学结果可知,PtPd合金在动力学上更有利于产氢,这与光催化产氢结果一致,即PtPd/Zn0.5Cd0.5S复合材料催化活性高于Pt/Zn0.5Cd0.5S.综上,本文研究结果可为其他金属合金助催化剂的研究提供新思路.  相似文献   

18.
甲苯-乙醇介质中二茂铁催化分解过氧化氢机理的探讨   总被引:3,自引:0,他引:3  
甲苯-乙醇介质中二茂铁催化分解过氧化氢机理的探讨;电子转移机理  相似文献   

19.
Platinum submonolayer decorated gold nanorods with controlled coverage were prepared by the addition of Au nanorods into the growth solution of Pt in the presence of NH2OH · HCl as the growth agent. The properties of Au nanorods decorated by Pt submonolayer were investigated by various techniques including transimission electron microscopy, X-ray diffraction, and electrochemical methods. The Pt decorated Au nanorods on carbon black showed significantly higher activity on formic acid electrooxidation than the conventional Pt/C catalysts. They showed different reaction path of formic acid electrooxidation by suppressing the formation of poisoning intermediate CO.  相似文献   

20.
曹蓉  汪梦雅  夏杰桢  吴琪 《化学通报》2022,85(5):547-552
燃料电池具有燃料多样性、噪声低、对环境污染小等优势,近年来备受研究者关注。然而,电池中的贵金属催化剂极易被少量的CO毒化,成为制约其商业化的一大障碍。因此,设计出高性能的催化剂对于推动燃料电池的发展十分关键。本文综述了燃料电池中铂(Pt)基催化剂对CO催化氧化的研究现状,首先探讨了CO催化氧化机理以及CO在Pt金属表面化学吸附的机理,其次详细介绍了Pt负载型催化剂、双金属催化剂以及助催化剂在催化反应中的不同作用,然后简单分析了影响Pt基催化剂性能的其他因素。最后,对燃料电池中Pt基催化剂的研究方向作了进一步的展望,旨在为燃料电池中CO催化氧化的发展开拓新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号