The aim of the work was to study the production of the exopolysaccharides by Agaricus brasiliensis and the isolation of exopolysaccharides (EPSs) with biological effects. A brasiliensis LPB03 was cultured in submerged fermentation in a medium containing glucose, yeast extract, hydrolyzed soybean protein, and salts (pH 6.1) at 29 degrees C and 120 rpm for 144 h. The maximum biomass and EPS yield was 7.80 +/- 0.01 and 1,430.70 +/- 26.75 mg/L, respectively. To isolate the produced EPSs, two methods were compared: (1) with alcohol precipitation and (2) treatment with tricloroacetic acid (TCA), followed by alcohol precipitation. The use of TCA facilitated the purification of the EPS, reducing the amount of the contaminant soy proteins. For monosaccharide identification, the EPSs were hydrolyzed, derivatized to alditol acetates, and analyzed by gas chromatography (GC) and GC-mass spectrometry, which showed the presence (in molar percentage) of mannose (58.7), galactose (21.4), and glucose (13.1) as major sugars, with lower amounts of rhamnose (3.9) and xylose (2.8). Scanning electron microscopy was used to observe the morphological structure of the EPS. The experiments in vivo including EPS in the mice diet during 8 weeks indicated the hipocholesteremic and hypoglycemic effects. 相似文献
Bacillus mojavensis B0621A was isolated from a pearl oyster Pinctada martensii collected from South China Sea. While screening for cyclic lipopeptides potentially useful as lead compounds for biological control against soil-bone fungal plant pathogens, three lipopeptides were isolated and purified from the fermentation broth of B. mojavensis B0621A via vacuum flash chromatography coupled with reversed-phase high performance liquid chromatography (RP-HPLC). The structural characterization and identification of these cyclic lipopeptides were performed by tandem mass spectrometry (MS/MS) combined with gas chromatography-mass spectrometry (GC-MS) analysis as well as chemical degradation. These lipopeptides were finally characterized as homologues of mojavensins, which contained identical amino acids back bones of asparagine1, tyrosine2, asparagine3, glutamine4, proline5, asparagine6, and asparagine7 and differed from each other by their saturated β-amino fatty acid chain residues, namely, iso-C14 mojavensin, iso-C16 mojavensin, and anteiso-C17 mojavensin, respectively. All lipopeptide isomers, especially iso-C16 mojavensin and anteiso-C17 mojavensin, displayed moderate antagonism and dose-dependent activity against several formae speciales of Fusarium oxysporum and presented surface tension activities. These properties demonstrated that the lipopeptides produced by B. mojavensis B0621A may be useful as biological control agent to fungal plant pathogens. 相似文献
Obtaining oligosaccharides from chitosan has been the focus of several studies in the pharmaceutical, chemical, food, and medical areas, due to their functional properties. Here, we evaluated the production potential of biologically functional chitooligosaccharides using enzymes extracts produced by Paenibacillus chitinolyticus and Paenibacillus ehimensis. After 48 h of fermentation, these microorganisms were able to produce chitosanases, which generated oligomers with a degree of polymerization between dimers and hexamers. The maximum conversion of chitosan to oligomers was 99.2 %, achieved after 12 h incubation of chitosan with enzymes produced by P. ehimensis. The chitooligosaccharides generated were capable of scavenging the 2,2-diphenyl-1-picrylhydrazyl radical, reaching a maximum scavenging rate of 61 and 39 % when produced with P. ehimensis and P. chitinolyticus enzymes, respectively. The use of these enzymes in the crude form could facilitate their use in industrial applications. 相似文献
Limnothrix redekei PUPCCC 116, a filamentous cyanobacterium, has been identified through 16S rRNA gene sequencing. Exopolysaccharides (EPS) of this organism have been isolated and characterized chemically, and its rheological properties were compared with commercial xanthan. The organism produced 304 μg EPS/ml culture in 21 days. The rate of EPS production was maximum (313 μg EPS/mg protein/day) during the initial days of growth, and it decreased to 140 μg EPS/mg protein/day during 18-21 days of growth. Chemical analysis of EPS revealed the presence of glucose/mannose, ribose, rhamnose, and uronic acid. Fourier transformed infrared spectrum of EPS further revealed the presence of methyl and carboxyl groups besides C–N groups indicating the presence of peptidyl moieties. Elemental analysis of EPS showed the presence of 4.97% N. The organism under continuous light produced 102% more EPS compared to when grown under a light/dark cycle of 14/10 h. The rheological properties of EPS were comparable with commercial xanthan gum. 相似文献
Four depsides, all of them new as natural products, were isolated from Cladosporium uredinicola solid‐media culture and identified as 3‐hydroxy‐2,5‐dimethylphenyl 2,4‐dihydroxy‐3,6‐dimethylbenzoate ( 1 ), 3‐hydroxy‐2,4,5‐trimethylphenyl 2,4‐dihydroxy‐3,6‐dimethylbenzoate ( 2 ), 3‐hydroxy‐2,5‐dimethylphenyl 3‐[(2,4‐dihydroxy‐3,6‐dimethylbenzoyl)oxy]‐6‐hydroxy‐2,4‐dimethylbenzoate ( 3 ), and 3‐hydroxy‐2,4,5‐trimethylphenyl 3‐[(2,4‐dihydroxy‐3,6‐dimethylbenzoyl)oxy]‐6‐hydroxy‐2,4‐dimethylbenzoate ( 4 ). The endophytic fungus was isolated from Psidium guajava fruits and cultivated over sterilized rice. The compounds 1 – 4 were purified by classical chromatographic procedures, and the chemical structures were identified by spectroscopic studies, mainly 1D‐ and 2D‐NMR and LC/ESI‐MS/MS. Three of the isolated depsides exhibited moderate bacteriostatic and/or bactericide effects on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtillis.相似文献
Coculture fermentations show advantages for producing food additives from agroindustrial wastes, considering that different specified microbial strains are combined to improve the consumption of mixed sugars obtained by hydrolysis. This technology dovetails with both the growing interest of consumers towards the use of natural food additives and with stricter legislations and concern in developed countries towards the management of wastes. The use of this technology allows valorization of both cellulosic and hemicellulosic fractions of trimming vine shoots for the production of lactic acid (LA), phenyllactic acid (PLA), and biosurfactants (BS). This work compares the study of the potential of hemicellulosic and cellulosic fractions of trimming vine shoots as cheaper and renewable carbon sources for PLA and BS production by independent or coculture fermentations. The highest LA and PLA concentrations, 43.0 g/L and 1.58 mM, respectively, were obtained after 144 h during the fermentation of hemicellulosic sugars and simultaneous saccharification and fermentation (SSF) carried out by cocultures of Lactobacillus plantarum and Lactobacillus pentosus. Additionally, cell-bond BS decreased the surface tension (ST) in 17.2 U; meanwhile, cell-free supernatants (CFS) showed antimicrobial activity against Salmonella enterica and Listeria monocytogenes with inhibition halos of 12.1?±?0.6 mm and 11.5?±?0.9 mm, respectively. 相似文献
Summary: Polystyrene (PS) micro‐ and nanospheres with uniform dimensions and smooth surfaces have been produced by electrospray. The effect of PS molecular weight on beads morphology and the fundamental role of concentration have been investigated. Moreover, a new apparatus was designed to collect the polymer spheres during the process and to prevent the coalescence among the spheres.
Polymeric nanoparticles constitute an important drug delivery system with controlled release profile. This article describes a new way to produce polymeric nanocapsules using a vegetable oil nanoemulsion as template. The process occurs in two steps: First, a nanoemulsion was obtained with a low-energy method based on phase inversion emulsification, using 2-ethylhexyl acrylate as lipophilic monomer. The in situ polymerization of the nanoemulsion droplets is induced by the addition of polymerization catalyzers. The mean size of the polymeric nanoparticles was evaluated by photon correlation spectroscopy and atomic force microscopy. Both techniques showed the formation of polymeric nanocapsules with a mean particle size less than 300 nm. 相似文献
Synthesis of innovative exocellular polysaccharides (EPSs) was reported for few thermophilic microorganisms as one of the mechanisms for surviving at high temperature. Thermophilic aerobic spore-forming bacteria able to produce exopolysaccharides were isolated from hydrothermal springs in Bulgaria. They were referred to four species, such as Aeribacillus pallidus, Geobacillus toebii, Brevibacillus thermoruber, and Anoxybacillus kestanbolensis. The highest production was established for the strain 418, whose phylogenetic and phenotypic properties referred it to the species A. pallidus. Maltose and NH4Cl were observed to be correspondingly the best carbon and nitrogen sources and production yield was increased more than twofold in the process of culture condition optimization. After purification of the polymer fraction, a presence of two different EPSs, electroneutral EPS 1 and negatively charged EPS 2, in a relative weight ratio 3:2.2 was established. They were heteropolysaccharides consisting of unusual high variety of sugars (six for EPS 1 and seven for EPS 2). Six of the sugars were common for both EPSs. The main sugar in EPS 1 was mannose (69.3 %); smaller quantities of glucose (11.2 %), galactosamine (6.3 %), glucosamine (5.4 %), galactose (4.7 %), and ribose (2.9 %) were also identified. The main sugar in EPS 2 was also mannose (33.9 %), followed by galactose (17.9 %), glucose (15.5 %), galactosamine (11.7 %), glucosamine (8.1 %), ribose (5.3 %), and arabinose (4.9 %). Both polymers showed high molecular weight and high thermostability. 相似文献
Metal remediation was studied by the sorption of analytical grade copper Cu(II) and silver Ag(I) by four exopolysaccharides (EPS) produced by marine bacteria. Colorimetric analysis showed that these EPS were composed of neutral sugars, uronic acids (>20 %), acetate, and sulfate (29 %). Metal sorption experiments were conducted in batch process. Results showed that the maximum sorption capacities calculated according to Langmuir model were 400 mg g?1 EPS (6.29 mmol g?1) and 333 mg g?1 EPS (3.09 mmol g?1) for Cu(II) and Ag(I), respectively. Optimum pH values of Ag(I) sorption were determined as 5.7. Experiment results also demonstrated the influence of initial silver concentration and EPS concentrations. Microanalyzing coupled with scanning electron microscopy demonstrated the presence of metal and morphological changes of the EPS by the sorption of metallic cations. The Fourier transform infrared spectroscopy analysis indicated possible functional groups (e.g., carboxyl, hydroxyl, and sulfate) of EPS involved in the metal sorption processes. These results showed that EPS from marine bacteria are very promising for copper and silver remediation. Further development in dynamic and continuous process at the industrial scale will be established next. 相似文献
The production of antimicrobial metabolites by Paenibacillus polymyxa RNC-D was assessed. Two process variables, glucose and inoculum concentrations, were evaluated at different levels (5?C40 g L?1, and at ??r = 2.5?C5.0 %, respectively), and their effects on biomass formation, minimal inhibitory concentration (MIC) against Escherichia coli, and surface tension reduction (STR) were studied. When the fermentation process was carried out under non-optimised conditions, the biomass, MIC, and STR achieved the following values: 0.6 g L?1, 1 g L?1, and 18.4 mN m?1, respectively. The optimum glucose (16 g L?1) and inoculum volume ratio (??r = 5.0 %) were defined in order to maximise the biomass formation, with a low value of MIC and high STR of extract. The experiments carried out under optimal conditions showed the following values for the dependent variables: biomass concentration 2.05 g L?1, MIC 31.2 ??g mL?1, and STR 10.7 mN m?1, which represented improvement of 241.7 %, 96.9 %, and 41.9 % for the responses of biomass, MIC, and STR, respectively. This is the first recorded study on the optimisation of culture conditions for the production of antimicrobial metabolites of P. polymyxa RNC-D, and constitutes an important step in the development of strategies to modulate the production of antimicrobial molecules by this microorganism at elevated levels. 相似文献
The effect of macromolecule shape on the depletion attraction between two hard spherical particles in a solution with nonadsorbing hard spheroidal macromolecules of arbitrary size and aspect ratio was investigated using a modified form of the force-balance model of J. Y. Walz and A. Sharma (1994, J. Colloid Interface Sci. 168, 495). The macromolecules were represented as general spheroids, which could be either charged or uncharged. For the uncharged case, a set of analytical expressions describing the depletion attraction, valid for particles much larger than the characteristic macromolecule size, was developed. Comparisons with the case of spherical macromolecules were made under the condition of either constant macromolecule number density, rho(b), or constant volume fraction, phi. It was found that increasing the spheroidal macromolecule aspect ratio (major axis length/minor axis length) decreases the depletion attraction at constant rho(b), but increases the interaction at constant phi. In the latter case, the interaction produced by prolate macromolecules is greater than that produced by oblate macromolecules of equal axis lengths, while the opposite is true at constant rho(b). A simple scaling analysis is used to explain these trends. Surface charge is found to increase both the range and the magnitude of the depletion attraction; however, the general trends are the same as those found in the uncharged systems. Finally, the effect of the depletion attraction produced by spherical and spheroidal macromolecules on the stability of a dispersion of charged particles was examined. It was found that charged spheroids at concentrations of order 1% volume can produce secondary energy wells of sufficient magnitude to induce flocculation in a dispersion of charged spherical particles. Copyright 2000 Academic Press. 相似文献
Six known compounds, isoroquefortine C (1), griseofulvin (2), ergosterol peroxide (3), 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (4), cerevisterol (5) and (22E,24R)-6β-methoxyergosta-7,22-diene-3β,5α-diol (6), were produced by the fungus Penicillium brasilianum, and their structures were elucidated by spectroscopic methods. This is the first report on isoroquefortine C as naturally occurring compound. Their bioactivities against five phytopathogenic fungi (Gibeberalla saubinetti, Fusarium solani, Botrytis cinerea, Colletotrichum gloeosporioides and Alternaria solani) and four pathogenic bacteria (Escherichia coli, Bacillus subtilis, Staphyloccocus aureus and Bacillus cereus), as well as allelopathic activities on Raphanus sativus were tested. Compound 1 exhibited a remarkable antifungal activity with minimum inhibitory concentration (MIC) of 12.5 μM against C. gloeosporioides, in comparison with positive control hymexazol (MIC 25 μM). Compound 2 displayed strong inhibitory effects on the growth of A. solani and S. aureus with MIC of 3.13 μM for each. Compounds 2 and 3 displayed a significant growth-inhibition activity on R. sativus.相似文献
Produced water, water that is co-produced during oil and gas manufacturing, represents the largest source of oily wastewaters. Given high oil and gas prices, oil and gas production from non-conventional sources such as tar sands, oil shale and coal bed methane will continue to expand resulting in large quantities of impaired produced water. Treatment of this produced water could improve the economic viability of these oil and gas fields and lead to a new source of water for beneficial use.Two nanofiltration and one low-pressure reverse osmosis membrane have been tested using three produced waters from Colorado, USA. The membranes were analyzed before and after produced water filtration using field emission scanning electron microscopy (FESEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In addition, membrane–water contact angles have been measured. XPS data indicate adsorption of organic and inorganic species during filtration. FESEM and ATR-FTIR data support theses findings. Water contact angles indicate the effect of membrane hydrophilicity on fouling. Our results highlight the value of using multiple surface characterization methods with different depths of penetration in order to determine membrane fouling. Depending on the quality of the produced water and the water quality requirements for the beneficial uses being considered, nanofiltration may be a viable process for produced water treatment. 相似文献
In this work, we introduce a new sample preparation method for the extraction and preconcentration of selenium in dietary supplement tablets and mineral water. The bio-coacervation extraction technique is based on the use of a three-part system consisting of an ionic liquid, a biosurfactant and water. The advantage of this method is that the three components are non-toxic, green and eco-friendly. Parameters affecting the extraction efficiency, such as the amount of biosurfactant, the volumes of water and ionic liquid, pH, ionic strength, time extraction, temperature and the extraction method, were optimized. The calibration graph was linear, in the range of 0.55–40 µg L−1. The detection limit for selenium after quantitative analysis was 0.183 µg L−1 and the enrichment factor 190. The relative standard deviation for six replicate measurements was 4.6 %.