首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is concerned with a novel mass microalgae production system which, for the first time, uses “centrate”, a concentrated wastewater stream, to produce microalgal biomass for energy production. Centrate contains a high level of nutrients that support algal growth. The objective of this study was to investigate the growth characteristics of a locally isolated microalgae strain Chlorella sp. in centrate and its ability to remove nutrients from centrate. A pilot-scale photobioreactor (PBR) was constructed at a local wastewater treatment plant. The system was tested under different harvesting rates and exogenous CO2 levels with the local strain of Chlorella sp. Under low light conditions (25 μmol·m-2s-1) the system can produce 34.6 and 17.7 g·m-2day-1 biomass in terms of total suspended solids and volatile suspended solids, respectively. At a one fourth harvesting rate, reduction of chemical oxygen demand, total Kjeldahl nitrogen, and soluble total phosphorus were 70%, 61%, and 61%, respectively. The addition of CO2 to the system did not exhibit a positive effect on biomass productivity or nutrient removal in centrate which is an organic carbon rich medium. The unique PBR system is highly scalable and provides a great opportunity for biomass production coupled with wastewater treatment.  相似文献   

2.
This work reports on the removal of organic matter and nitrogen in a radial-flow aerobic-anoxic immobilized biomass (RAIB) reactor fed with domestic sewage pretreated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Polyurethane foam was used as support material for biomass attachment in both reactors. In batch experiments, a first-order kinetic model with residual concentration represented the organic matter removal rate, whereas nitrogen conversion followed a pseudo-first-order reaction in series model, with kinetic constants k 1 (ammonium to nitrite) and k 2 (nitrite to nitrate) of 0.25 and 6.62 h−1, respectively. The RAIB reactor was operated in continuous-flow mode and changes in the airflow rate and hydraulic retention time were found to interfere in the apparent kinetic constants to the nitritation (k 1) and nitratation (k 2). Nitrification and denitrification were achieved in the partially aerated RAIB reactor operating with hydraulic retention times of 3.3 h and 2.7 h in the aerobic and anoxic zones, respectively. Ethanol was added in the anoxic zone of the reactor to promote denitrification. The effluent flow of the RAIB reactor presented a COD of 52 mg l−1, and concentrations of 2 mg , 1.24 mg and 3.46 mg .  相似文献   

3.
The capability to grow microalgae in nonsterilized wastewater is essential for an application of this technology in an actual industrial process. Batch experiments were carried out with the species in nonsterilized urban wastewater from local treatment plants to measure both the algal growth and the nutrient consumption. Chlorella protothecoides showed a high specific growth rate (about 1 day?1), and no effects of bacterial contamination were observed. Then, this microalgae was grown in a continuous photobioreactor with CO2–air aeration in order to verify the feasibility of an integrated process of the removal of nutrient from real wastewaters. Different residence times were tested, and biomass productivity and nutrients removal were measured. A maximum of microalgae productivity was found at around 0.8 day of residence time in agreement with theoretical expectation in the case of light-limited cultures. In addition, N-NH4 and P-PO4 removal rates were determined in order to model the kinetic of nutrients uptake. Results from batch and continuous experiments were used to propose an integrated process scheme of wastewater treatment at industrial scale including a section with C. protothecoides.  相似文献   

4.
《Analytical letters》2012,45(8):1383-1396
Abstract

A preliminary study on the binding and removal of trace concentrations of aluminum ions in waters by two species of algae, Chlorella Pyrenoidosa and Chlorella Vulgaaris, were investigated. Binding by the former was minimal over all pH ranges, but binding by the latter was effective with a maximum binding of 68% occurring at pH 5. Binding was lowered drastically below pH 2, and this may be used to remove aluminum from the algae. Optimum binding occurred after 20 minutes exposure time of algae to aluminum solution and 450 mg algae mass to 100 mL solution. Binding was reproducible and more efficient in waters with low suspended solids. High salt concentrations interfere with binding, and the Chlorella Vulgaris could be reused 7 times with washings between each binding before a noticeable decrease in binding efficiency was found.  相似文献   

5.
This paper reports the use of activated carbons made from novel agriculture and industrial wastes, namely sunflower, vine shoots, and coffee endocarp, to remove two high-priority contaminants: phenol and mercury species (under different forms) from aqueous solutions. The activated carbons were used as prepared and also modified with nitric acid and triethylenediamine in order to explore additional adsorption mechanisms. The results showed an interesting potential of the materials to be used for water decontamination as indicated by the mercury uptake up to 1104 mg/g for Hg2+, 771 mg/g for [HgCl4]2−, 966 mg/g for HgCl2 and the maximum phenol adsorption capacity of 190 mg/g. The modification with triethylenediamine led to a significant increase in the phenol and mercury adsorption reaching an increment of 85% for phenol and 250% for Hg2+.  相似文献   

6.
Removal of Heavy Metals in Effluent by Adsorption and Coagulation   总被引:1,自引:0,他引:1  
The silicate colloids with an average diameter 100 nm, were prepared by the hydrolysis of tetraethoxysilane (TES), NH4OH (30%) and then modified by (3-mercaptopropyl)trimethoxysilane (APS). The colloids can adsorb heavy metals such as Pb and Cr in effluent and after adsorption the colloids can be separated by coagulation of aluminum sulfate. The removal of heavy metals is up to 99%.  相似文献   

7.
The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L−1 day−1) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L−1 day−1 were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L−1 day−1, highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L−1 day−1, organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.  相似文献   

8.
Applied Biochemistry and Biotechnology - The microbial fuel cell (MFC) provides an inexhaustible electron acceptor to generate current and enhance the degradation of organic compounds. In MFCs with...  相似文献   

9.
The first continuous production system of laminaribiose from sucrose and glucose in a bienzymatic reaction is reported in this study. Immobilized laminaribiose phosphorylase and sucrose phosphorylase were used in a packed bed reactor system comprising of a 3-cm glass column at 35 °C with a steady feeding flow rate of 0.1 ml/min. Factors affecting product formation including enzyme ratio, peal concept (both enzymes in one pearl or in separate pearls), and pearl size were studied. An enzyme ratio of 2:1 of laminaribiose phosphorylase (LP) to sucrose phosphorylase (SP) when encapsulated separately in bigger size peals resulted in higher concentration of product. Laminaribiose (0.4 g/(L h)) is produced in the optimized system at steady state. The reaction system proved to be operationally stable throughout 10 days of continuous processing. A half-life time of more than 9 days was observed for both biocatalysts.  相似文献   

10.
A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98?% removed in the RBC when the superficial air flow rate was 375?ml/h (1,193 and 1,226?mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872?mg/m3/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K s demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98?% organic removal in the RBC.  相似文献   

11.
Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m−2, which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO3–N) L−1 day−1, which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia.  相似文献   

12.
MethaneutilizationhasbeendrawingconsiderableattentionrecentlyduetothelargeamountofnatUralgasavailabletobeupgradedandtheworldwidedemandforlow-costtransportationfuelsl'2.Amongthemanyconversionroutes,partialoxidationofmethane(POM)tosyngasprovedanewwayforthepotentialalternativetotoday'sindustrialsteamreformingprocesses.HoweveT,althoughveryactivecatalystsforthePOMtosyngashavebeenreported,large-scaleplantshavenotyetbeenconstructed.AIargeadiabatictemperatUreriseatthefrontoftheco-bedeasilycausesre…  相似文献   

13.
Hypericum perforatum L. (St. John’s Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l?1 indole butyric acid, 0.1 mg l?1 kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g?1 DW of total phenolics, 48.6 mg g?1 DW of total flavonoids, 1.3 mg g?1 DW of chlorogenic acid, 0.01 mg g?1 DW of hyperin, 0.04 mg g?1 DW of hypericin, and 0.01 mg g?1 DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry.  相似文献   

14.
15.
16.
Effects of multiple corona reactor modes on pulse characteristics, energy transfer efficiency, and odor (H2S and NH3) removal were investigated experimentally by the wire-plate corona reactor(s). The removal efficiency of H2S was only 91% and the energy consumption was 16.1 Wh m−3 by the single mode with a gas-flow rate of 23 m3 h−1 and an initial concentration of 200 mg m−3. At the same experimental conditions, almost 100% removal efficiency was achieved and the energy consumption was only 12.8 and 14.9 Wh m−3 by the series and parallel modes. In the case of 50 mg m−3 NH3 removal at the same gas-flow rate, the removal efficiencies with the single mode, the series and parallel modes were 64, 92 and 70%, respectively. The energy requirement did not increase at the same residence time under the experimental conditions of the single mode with a gas-flow rate of 11.5 m3 h−1 and the series or parallel mode with a gas-flow rate of 23.0 m3 h−1. The experimental results indicate that the series and parallel modes are effective in saving energy consumption, improving removal ability and efficiency, especially for the series mode.  相似文献   

17.
To establish a novel approach for VOCs resource utilization, coupled o-xylene oxidation and hematite reduction was investigated in this study in a high-temperature gas-solid reactor in the temperature range 300–700 °C. As the o-xylene-containing inert gas (N2) stream traveled through the hematite particle bed, its reaction behavior was determined in programmed heating and constant temperature modes. Consequently, the effect of bed temperature, flow rate and o-xylene inlet concentration on both o-xylene removal performance and degree of hematite reduction was studied. The raw hematite and solid products were analyzed by TGA, XRF, XRD and SEM-EDS. The results showed that a temperature above 300 °C was required to completely eliminate o-xylene by hematite, and both o-xylene removal capacity and degree of hematite reduction at 5% breakthrough points enhanced on increasing the temperature and decreasing the flow rate. The increment in temperature from 300 °C to 700 °C led to a gradual reduction of Fe2O3 to Fe3O4, FeO and metallic iron. Thus, this study provides a novel, economic and promising technology for treating the VOC pollutants.  相似文献   

18.
The time‐optimal grade‐transition policies, as well as the selection of the optimal grade production sequence, are calculated for a gas‐phase ethylene/but‐1‐ene copolymerization FBR. The tuning parameters (i.e., proportional gain and integral time) of the feedback PI process controllers, as well as the time‐optimal trajectories of the feedforward controllers, are treated as decision variables. A two‐level decomposition approach is applied for solving the optimal‐grade transition‐scheduling problem, taking into account the impact of both transient operation and the sequence of grade transitions on the overall amount of off‐spec polymer and overall transition time.

  相似文献   


19.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

20.
Abstract

The soil degradation of isoproturon under standardized laboratory conditions was compared to that carried out in an outdoor experiment using lysimeters. After application of 14C-labelled formulated isoproturon (1.5 kg A.I./ha), radiochemical analysis, as well as microbial investigations, were performed to relate changes in soil microbial biomass to its capability of degrading isoproturon. The results showed that the microbial biomass, as well as its dehydrogenase activity, varied under field conditions due to fluctuations of temperature and soil moisture. In the laboratory experiment the microbial biomass decreased during the 100 day experimental period, this reduction being the result of the experimental conditions. Consequently, the herbicide was degraded more quickly in the outdoor experiment where leaching, formation of 14CO2 uptake by plants, and photolysis also took place, than in the laboratory experiment. Further microbiological investigation in the laboratory experiment showed that specific populations known to be responsible for the metabolic degradation of the compound were enhanced in the isoproturon-treated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号