首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a highly sensitive two-photon probe (SZn2-Mito) which shows a 70-fold two-photon excited fluorescence enhancement in response to Zn(2+) and can selectively detect mitochondrial Zn(2+) in a rat hippocampal slice at a depth of 100-200 μm by using two-photon microscopy.  相似文献   

2.
We report a two-photon probe (SZn-Mito) for mitochondrial zinc ions ([Zn2+]m). This probe shows a 7-fold enhancement of two-photon-excited fluorescence in response to Zn2+ with a dissociation constant (Kd(TP)) of 3.1 ± 0.1 nM and pH insensitivity in the biologically relevant range, allowing the detection of [Zn2+]m in a rat hippocampal slice at a depth of 100?200 μm without interference from other metal ions through the use of two-photon microscopy.  相似文献   

3.
The synthesis of a difluorofluorescein monocarboxaldehyde platform and its use for preparing ZP8, a new member of the Zinpyr family of neuronal Zn(2+) sensors, are described. By combining an aniline photoinduced electron transfer (PET) switch and an electron-withdrawing fluorescein scaffold, ZP8 displays reduced background fluorescence and improved dynamic range compared to previous ZP probes. The bright sensor undergoes an 11-fold increase in fluorescence intensity upon Zn(2+) complexation (Phi = 0.03-0.35) with high selectivity over cellular concentrations of Ca(2+) and Mg(2+). In addition, sensors in the ZP family have been utilized for optical imaging in biological samples using two-photon microscopy (TPM). The cell-permeable ZP3 probe is capable of identifying natural pools of labile Zn(2+) within the mossy fiber synapses of live hippocampal slices using TPM, establishing the application of this technique for monitoring endogenous Zn(2+) stores.  相似文献   

4.
Liu L  Dong X  Xiao Y  Lian W  Liu Z 《The Analyst》2011,136(10):2139-2145
In the present work, a two-photon excited fluorescent chemosensor for Cu(2+) was prepared. The probe was constructed on the basis of internal charge transfer (ICT) principle with macrocyclic dioxotetraamine as the Cu(2+) receptor. The good water-solubility of the molecule enabled recognition and assay of Cu(2+) ions in biological media. The photophysical properties of the chemosensor were investigated in detail, exhibiting favorable fluorescence quantum yield and moderate two-photon absorption cross-section. The studies on binding thermodynamics demonstrated the formation of 1?:?1 complex between the chemosensor and Cu(2+) and an association constant of ca. 1.04 × 10(5) M(-1). Due to the rational design of the molecular structure, the sensor was highly specific to Cu(2+), which ensured high selectivity in Cu(2+) determination. Upon Cu(2+) binding, the intramolecular charge-transfer extent within the chromophore was weakened resulting in a remarkable quenching of fluorescence, based on which quantitative determination of Cu(2+) was performed. Good linearity was obtained between the fluorescence quenching value and Cu(2+) concentration ranging from 0.04 to 2.0 μM in aqueous solution. Benefiting from the merits of two-photon excitation, the chemosensor was free of interference from background luminescence in serum. A homogeneous quantitative determination of Cu(2+) was achieved in the serum medium with a linear range of 0.04 to 2.0 μM. Considering the structural flexibility of the sensor, this work also opens up the possibility to construct other two-photon excited chemosensors for direct homogeneous assay of various molecules/ions in complicated biological sample matrices.  相似文献   

5.
A new two-photon fluorescent Cd(2+) probe APQ is developed by introducing a N(1),N(1)-dimethyl-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine binding group and a 4-methoxyphenylvinyl conjugation-enhancing group to the 2- and 6-positions of quinoline. This probe shows a large red shift and good emission enhancement under Cd(2+) binding. It also exhibits a high ion selectivity for Cd(2+) (especially over Zn(2+)) and a large two-photon absorption cross section at 710 nm. Two-photon microscopy imaging studies reveal that the new probe is non-toxic and cell-permeable and can be used to detect intracellular Cd(2+) under two-photon excitation.  相似文献   

6.
Liu Y  Dong X  Sun J  Zhong C  Li B  You X  Liu B  Liu Z 《The Analyst》2012,137(8):1837-1845
A novel two-photon excited fluorescent probe for cadmium (named as TPCd) was designed and synthesized utilizing a prodan (6-acetyl-2-methoxynaphthalene) derivative as the two-photon fluorophore and an o-phenylenediamine derivative as the Cd(2+) chelator, which possessed favorable photophysical properties and good water-solubility. The probe was designed with a photoinduced electron transfer (PET) mechanism and thus was weakly fluorescent itself. After binding with Cd(2+) which blocked the PET process, the fluorescence intensity of the probe was enhanced by up to 15-fold under one-photon excitation (OPE) and 27-fold under two-photon excitation (TPE), respectively. The two-photon action cross-section (Φδ) of the TPCd-Cd complex at 740 nm reached 109 GM compared to 3.6 GM for free TPCd, indicating the promising prospect of the probe in two-photon application. TPCd chelated Cd(2+) with 1 : 1 stoichiometry, and the apparent dissociation constant (K(d)) was 6.1 × 10(-5) M for the one-photon mode and 7.2 × 10(-5) M for the two-photon mode. The probe responded to Cd(2+) over a wide linear range from 0.1 to 30 μM with a detection limit of 0.04 μM. High selectivity of the probe towards Cd(2+) was acquired in Tris-HCl/sodium phosphate buffer. The probe was pH-independent in the biologically relevant pH range and non-toxic to living cells at reasonable concentration levels, warranting its in vivo applications. Through two-photon microscopy imaging, the probe was successfully applied to detect Cd(2+) uptake in living HepG2 cells.  相似文献   

7.
A novel, two-photon probe for the detection of free Mg2+ ions in living cells and live tissues has been developed. The probe can be excited by 880 nm laser photons, emits strong two-photon excited fluorescence in response to Mg2+ ions, can be easily loaded into the cell and tissue, shows high photostability, and can measure the Mg2+ ion concentration without interference by Ca2+ ions in living cells. The intracellular dissociation constant (Kdi) for Mg2+ determined by the two-photon process is 2.5 mM, which is suitable for dynamic Mg2+ concentration measurement. In addition, the probe is capable of imaging endogenous stores of free Mg2+ at a few hundred micrometers depth in live tissues using two-photon microscopy (TPM).  相似文献   

8.
A molecular two-photon sensor for the metal ions derived from bis(2-pyridyl)amine as the receptor is reported. The sensor emits strong two-photon fluorescence when excited by 780 nm laser photons. Moreover, the binding constants measured by the one- and two-photon fluorescence are similar. This result may be useful for the design of efficient two-photon fluorescence probe for biological substrates.  相似文献   

9.
We report a two-photon probe (FS1) which shows a 21-fold two-photon excited fluorescence enhancement in response to H(2)S and can selectively detect H(2)S in a rat hippocampal slice at a depth of 90-190 μm by using two-photon microscopy.  相似文献   

10.
1,3-Alternate calix[4]arene-based fluorescent chemosensors bearing two-photon absorbing chromophores have been synthesized, and their sensing behaviors toward metal ions were investigated via absorption band shifts as well as one- and two-photon fluorescence changes. Free ligands absorb the light at 461 nm and weakly emit their fluorescence at 600 nm when excited by UV-vis radiation at 461 nm, but no two-photon excited fluorescence is emitted by excitation at 780 nm. Addition of an Al(3+) or Pb(2+) ion to a solution of the ligand causes a blue-shifted absorption and enhanced fluorescence due to a declined resonance energy transfer (RET) upon excitation by one- and two-photon processes. Addition of a Pb(2+) ion to a solution of 1.K(+) results in a higher fluorescence intensity than the original 1.Pb(2+) complex regardless of one- or two-photon excitation, due to the allosteric effect induced by the complexation of K(+) with a crown loop.  相似文献   

11.
J Luo  WS Li  P Xu  LY Zhang  ZN Chen 《Inorganic chemistry》2012,51(17):9508-9516
A Zn(2+)-responsive bimodal magnetic resonance imaging (MRI) and luminescence imaging probe GdL was synthesized. The relaxivity and luminescence properties were examined. In the presence of 0.5 equiv of Zn(2+), the longitudinal relaxivity is increased from 3.8 mM(-1) s(-1) to 5.9 mM(-1) s(-1) at 23 MHz and 25 °C with 55% enhancement, whereas the fluorescence exhibits a 7-fold increase. The Zn(2+) responsive imaging probe shows favorable selectivity and tolerance over a variety of biologically relevant anions and metal ions in physiological pH range for both relaxivity and luminescence. In vitro phantom images and confocal fluorescence images in living cells show that the bimodal Zn(2+) probe can effectively enhance T(1)-weighted imaging contrast and luminescence imaging effect through Zn(2+) coordination with excellent cellmembrane permeability and biocompatibility. Spectral and electrospray ionization mass spectrometry (ESI-MS) studies indicate that two different Zn(2+)-bound species, (GdL)(2)Zn and GdLZn, are formed when 0.5 and 1 equiv of Zn(2+) are bound to GdL complex, respectively. Crystal structural determination and dysprosium-induced (17)O NMR shift (DIS) experiment demonstrate that the increased molecular weight and the improved molecular rigidity upon complexation of Zn(2+) with GdL is the primary factor for relaxivity enhancement. Significant enhancement of the luminescence is due to a heavy atom effect and much increased molecular rigidity upon Zn(2+) binding to 8-sulfonamidoquinoline chromophore.  相似文献   

12.
An acedan derivative containing Zn(II)-DPA has been developed as a two-photon probe for nucleoside phosphates, which shows enhanced fluorescence toward ATP and ADP at physiological pH 7.4 among other competing anions including AMP; the probe is permeable to cell membranes and thus can be directly used for two-photon imaging of ATP and ADP in live cells.  相似文献   

13.
The equilibrium geometries, electronic structures, as well as one- and two-photon absorption cross sections of a series of octupolar chromophores with Zn(2+) or Cu(+) as coordinate centers and 4,4'-bis(dibutylaminostyryl)-[2,2']-bis(bipyridyl) as ligands have been determined by using B3LYP/6-31G and ZINDO methods. These molecules are designed by controlled combination of two or three bipyridyl ligands with the metal centers. The results show that Zn(2+) is an effective template for the design of octupolar structures which enable it to form tetrahedral and octahedral coordinated complexes; while Cu(+) only exists in a tetrahedral coordinated complex, comparing the tetrahedral complex with Zn(2+) as the center with that of Cu(+) as the center, it is found that the complex with the Cu(+) center is a better two-photon absorption material than the former as far as the transparency/nonlinearity is concerned. Furthermore, for the same metal center of Zn(2+), both one- and two-photon absorptions of the tetrahedral complex are redshifted relative to those of the octahedral complex, is attributed to the spiroconjugation effect in the tetrahedral complex. Our theoretical findings are consistent with recent experimental observations and provide an important foundation for the design of improved transparency-nonlinearity two-photon absorption materials.  相似文献   

14.
分别以双氰基二苯代乙烯(DCS)和双[2-(2-羟乙基硫基)乙基]氨(HSA)为双光子荧光团和汞离子受体,合成了双光子荧光汞离子探针(DHg),并对其结构进行了分析.实验结果表明,DHg在甲苯、乙腈和水中的荧光量子产率(Φ)分别为0.78,0.42和0.20,对汞离子的络合常数通过单、双光子荧光滴定分别拟合为lg K=5.47±0.02和lg K=5.34±0.02.DHg在水溶液中对汞离子具有优良的选择性和高的灵敏性,可用于中性环境中汞离子的检测.DHg的双光子吸收截面(δTPA)在水溶液中高达840 GM,可用于细胞中汞离子的检测与成像.  相似文献   

15.
The Ullmann amination reaction was utilized to provide access to a number of fluorene analogues from common intermediates, via facile functionalization at positions 2, 7, and 9 of the fluorene ring. Through variation of amine or iodofluorene derivative, analogues bearing substitutents with varying electron-donating and electron-withdrawing ability, e.g., diphenylamino, bis-(4-methoxyphenyl)amine, nitro, and benzothiazole, were synthesized in good yield. The novel fluorene derivatives were fully characterized, including absorption and emission spectra. Didecylation at the 9-position afforded remarkably soluble derivatives. Target compounds 4, 5, and 9 are potentially useful as fluorophores in two-photon fluorescence microscopy. Their UV-vis spectra display desirable absorption in the range of interest suitable for two-photon excitation by near-IR femtosecond lasers. Preliminary measurements of two-photon absorption indicate the derivatives exhibit high two-photon absorptivity, affirming their potential as two-photon fluorophores. For example, using a 1,210 nm femtosecond pump beam, diphenylaminobenzothiazolylfluorene 4 exhibited nondegenerate two-photon absorption, with two-photon absorptivity (delta) of ca. 820 x 10(-50) cm(4) s photon(-1) molecule(-1) at the femtosecond white light continuum probe wavelength of 615 nm.  相似文献   

16.
New ratiometric two-photon fluorescent probes are developed from 6-substituted quinolines for biological Zn(2+) detection. They show large red shifts and good ratiometric responses upon Zn(2+) binding. They also exhibit high ion selectivities and large two-photon absorption cross sections at nearly 720 nm. Because the new probes are cell-permeable, they can be used to detect intracellular zinc flux under two-photon excitation.  相似文献   

17.
Hu P  Jin L  Zhu C  Dong S 《Talanta》2011,85(1):713-717
In this work, a novel fluorescence biosensor was demonstrated for detection of Hg(2+) ions with relatively high selectivity and sensitivity. The sensing scheme was based on G-quenching induced by Hg(2+) ions. In the presence of Hg(2+) ions, the single-stranded signal probe which has carboxylfluorescein (FAM) and guanine segment at its 5' and 3' ends, respectively, folded into duplex-like structure via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. It brought guannine segment close to the dye and caused a remarkable decrease of fluorescence signal. The sensor showed a sensitive response to Hg(2+) ions in a concentration range from 0.5 to 10 μM, and a detection limit of 0.5 nM was given. This homogeneous system required only a single-labeled oligonucleotide, operated by concise procedures, and possessed comparable sensitivity as previous approaches. Furthermore, the sensor exhibits a great perspective for future practical applications.  相似文献   

18.
制备了衍生于双氰基二苯代乙烯的双光子荧光锌离子探针, 该探针以4-(2-吡啶甲基)哌嗪为锌离子受体, 当络合锌离子时, 探针的荧光强度增强了72.5倍和580 GM的双光子吸收截面. 该探针无细胞毒性且在体内环境中无pH敏感性, 其解离常数KdTP=(0.52±0.01) μmol/L. 性能测试结果表明, 该探针能选择性地检测活细胞中的游离锌离子, 耐时长达约1500 s, 且能探测活体组织80~150 μm深处的锌离子, 不受其它金属离子与生物膜的干扰.  相似文献   

19.
We report a ratiometric two-photon probe (SSH-Mito) for mitochondrial thiols. This probe shows a marked blue-to-yellow emission color change in response to RSH, a significant two-photon cross section, good mitochondrial thiol selectivity, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range, allowing the direct visualization of RSH levels in live cells as well as in living tissues at 90-190 μm depth without interference from other biologically relevant species through the use of two-photon microscopy.  相似文献   

20.
Lin YW  Chang HT 《The Analyst》2011,136(16):3323-3328
A DNA probe labeled with a 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) quencher and a carboxyfluorescein (FAM) donor at its 5'- and 3'-termini can be used for the detection of Hg(2+) ions and phenylmercury ions (PhHg(+)). This DNA probe possesses a random coil structure that changes into a hairpin-like structure upon binding Hg(2+) and PhHg(+) ions. As a result, the fluorescence of the FAM unit decreased through quenching between the donor and the quencher. In the presence of ethylenediaminetetraacetic acid (EDTA), the DNA probe allowed the selective detection of PhHg(+) ions at concentrations as low as 70.0 nM, mainly as a result of T-Hg(2+)-T coordination and π-π stacking between the Ph unit and DNA bases. A linear correlation existed between the fluorescence intensity and the concentration of PhHg(+) ions over the range from 0.10 to 1.0 μM (R(2) = 0.99). After acid hydrolysis and neutralization of the samples, all of the mercury species are converted to Hg(2+) ions, allowing us to use the DNA-based probe to determine the concentrations of total mercury species at the nM level. The practicality of this probe has been validated by the analyses of pond water and fish samples, showing its advantages of sensitivity, selectivity, and simplicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号