首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excited-state dynamics of a transition metal complex, tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)(3)](2+), has been investigated using femtosecond fluorescence upconversion spectroscopy. The relaxation dynamics in these molecules is of great importance in understanding the various ultrafast processes related to interfacial electron transfer, especially in semiconductor nanoparticles. Despite several experimental and theoretical efforts, direct observation of a Franck-Condon singlet excited state in this molecule was missing. In this study, emission from the Franck-Condon excited singlet state of [Ru(bpy)(3)](2+) has been observed for the first time, and its lifetime has been estimated to be 40 +/- 15 fs. Biexponential decays with a fast rise component observed at longer wavelengths indicated the existence of more than one emitting state in the system. From a detailed data analysis, it has been proposed that, on excitation at 410 nm, crossover from higher excited (1)(MLCT) states to the vibrationally hot triplet manifold occurs with an intersystem crossing time constant of 40 +/- 15 fs. Mixing of the higher levels in the triplet state with the singlet state due to strong spin-orbit coupling is proposed. This enhances the radiative rate constant, k(r), of the vibrationally hot states within the triplet manifold, facilitating the upconversion of the emitted photons. The vibrationally excited triplet, which is emissive, undergoes vibrational cooling with a decay time in the range of 0.56-1.3 ps and relaxes to the long-lived triplet state. The results on the relaxation dynamics of the higher excited states in [Ru(bpy)(3)](2+) are valuable in explaining the role of nonequilibrated higher excited sensitizer states of transition metal complexes in the electron injection and other ultrafast processes.  相似文献   

2.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

3.
Gold porphyrins are often used as electron-accepting chromophores in artificial photosynthetic constructs. Because of the heavy atom effect, the gold porphyrin first-excited singlet state undergoes rapid intersystem crossing to form the triplet state. The lowest triplet state can undergo a reduction by electron donation from a nearby porphyrin or another moiety. In addition, it can be involved in triplet-triplet energy transfer interactions with other chromophores. In contrast, little has been known about the short-lived singlet excited state. In this work, ultrafast time-resolved absorption spectroscopy has been used to investigate the singlet excited state of Au(III) 5,15-bis(3,5-di-t-butylphenyl)-2,8,12,18,-tetraethyl-3,7,13,17-tetramethylporphyrin in ethanol solution. The excited singlet state is found to form with the laser pulse and decay with a time constant of 240 fs to give the triplet state. The triplet returns to the ground state with a life-time of 400 ps. The lifetime of the singlet state is comparable with the time constants for energy and photoinduced electron transfer in some model and natural photosynthetic systems. Thus, it is kinetically competent to take part in such processes in suitably designed supermolecular systems.  相似文献   

4.
Electron photodetachment from the aromatic anion phenolate excited into the π-π* singlet excited state (S(1)) in aqueous solution is studied with ultrafast transient absorption spectroscopy with a time resolution of better than 50 fs. Broad-band transient absorption spectra from 300 to 690 nm are recorded. The transient bands are assigned to the solvated electron, the phenoxyl radical, and the phenolate S(1) excited state, and confirmation of these assignments is achieved using both KNO(3) as electron quencher and time-resolved fluorescence to measure singlet excited state dynamics. The phenolate fluorescence lifetime is found to be short (~20 ps) in water, but the fast decay is only in part due to the electron ejection channel from S(1). Using global target analysis, two electron ejection channels are identified, and we propose that both vibrationally hot S(1) state and the relaxed S(1) state are direct precursors for the solvated electron. Therefore, electron ejection is found just to compete with picosecond time scale vibrational relaxation and electronic radiationless decay channels. This contrasts markedly with <100 fs electron detachment processes for inorganic anions.  相似文献   

5.
Ultrafast laser flash photolysis (266 nm) of para- and ortho-biphenyl azide in acetonitrile produces azide excited states that have broad absorption bands centered at 480 nm. The para-biphenyl azide excited singlet state has a lifetime of 100 fs. The excited-state lifetime of the ortho-azide isomer is 450 +/- 150 fs. Decay of the azide excited states is accompanied by the formation of the corresponding known singlet nitrenes (para, lambdamax = 350 nm, ortho, lambdamax = 400 nm). Singlet para-biphenylnitrene is born with excess energy and undergoes vibrational cooling with a time constant of 11 ps to form the long-lived (tau approximately 9 ns) relaxed singlet nitrene. Singlet ortho-biphenylnitrene decays with a lifetime of 16 ps in acetonitrile at ambient temperature.  相似文献   

6.
Detailed investigations by time‐resolved transient absorption and fluorescence spectroscopies with nano‐ and femtosecond time resolutions are carried out with the aim of characterising the lowest excited singlet and triplet states of three ethynyl fluorenes ( 1 – 3 ) and three ethynyl anthracenes ( 4 – 6 ) in solvents of different polarity. The solvent is found to modify the deactivation pathways of the lowest excited singlet state of compounds 1 – 4 , thus changing their fluorescence, intersystem crossing and internal conversion efficiencies. The fluorescence and triplet yields gradually decrease, while the internal conversion quantum yield increases upon increasing the solvent dielectric constant. These experimental results, coupled with the marked fluorosolvatochromic effect, point to the involvement of an emitting state with a charge‐transfer (CT) character, strongly stabilised by polar solvents. This is proved by ultrafast spectroscopic studies in which two transients, distinguished by characteristic spectral shapes assigned to locally excited (LE) and CT states, are detected, the CT state being the longer lived and fluorescent one in highly polar solvents. The intramolecular LE→CT process, operative in highly polar media, becomes particularly fast (up to ≈300 fs) in the case of the NO2 derivative 1 . No push–pull character is found for 5 and 6 , which exhibit different photophysical behaviour; indeed, the solvent polarity does not modify significantly the dynamics of the lowest excited singlet states. Quantum mechanical calculations at the TDDFT level are also used to determine the state order and nature of the lowest excited singlet and triplet states and to rationalise the different photophysical behaviour of fluorine and anthracene derivatives, particularly concerning the intersystem crossing process.  相似文献   

7.
利用飞秒泵浦-探测技术结合飞行时间质谱(TOF-MS),研究了丙烯酸分子被200nm泵浦光激发到第二电子激发态(S2)后的超快预解离动力学.采集了母体离子和碎片离子的时间分辨质谱信号,并利用动力学方程对时间分辨离子质谱信号进行拟合和分析,揭示了预解离通道的存在.布居在S2激发态的分子通过快速的内转换弛豫到第一电子激发态(S1),时间常数为210fs,随后再经内转换从S1态弛豫到基态(S0)的高振动态,时间常数为1.49ps.分子最终在基态高振动态势能面上发生C-C键和C-O键的断裂,分别解离生成H2C=CH和HOCO、H2C=CHCO和OH中性碎片,对应的预解离时间常数分别约为4和3ps.碎片离子的产生有两个途径,分别来自于母体离子的解离和基态高振动态势能面上中性碎片的电离.  相似文献   

8.
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field∕∕configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).  相似文献   

9.
Photodimers of anthracene and 9-methylanthracene photodissociate around 300 K mainly via the excited singlet state, around 77 K exlusively via the triplet state. As an intermediate an electronically excited “tight complex” (Xs) is proposed, of which only a small fraction rearranges to an excimer. The quantum yield of excimer and triplet formation is wavelength dependent.  相似文献   

10.
We address the possibility of populating the lowest triplet state of cytosine by an "intrinsic"mechanism, namely, intersystem crossing (ISC) along the ultrafast internal conversion pathway of the electronically excited singlet species. For this purpose, we present a discussion of the ISC process and triplet-state reactivity based on theoretical analysis of the spin-orbit strength and the potential energy surfaces for the relevant singlet and triplet states of cytosine. High-level ab initio computations show that ISC is possible in wide regions of the singlet manifold along the reaction coordinate that controls the ultrafast internal conversion to the ground state. Thus, the ISC mechanism documented here provides a possibility to access the triplet state, which has a key role in the photochemistry of the nucleic acid bases.  相似文献   

11.
Ultrafast laser flash photolysis (310 nm) of methyl 2-napthyldiazoacetate (2-NpCN2CO2CH3) in acetonitrile or cyclohexane produces a diazo excited state which absorbs broadly in the visible region (tau = 300 fs). The decay of the excited diazo compound is accompanied by growth of the vibrationally excited singlet 2-naphthyl(carbomethoxy)carbene ((1)NpCCO2CH3). The singlet carbene absorbs at 360 and 470 nm. In acetonitrile these bands do not decay over 3 ns, but they do decay by approximately 50% of their original intensity in cyclohexane in 3 ns. It is concluded that (1)NpCCO2CH3 has a singlet ground state in acetonitrile but a triplet ground state in cyclohexane. Related experiments reveal a singlet ground state in Freon-113 and chloroform. This interpretation is supported by ultrafast IR spectroscopy, which confirms that only (1)NpCCO2CH3 is formed within 50 ps of the laser pulse rather than a singlet-triplet equilibrium mixture of carbene. The planar singlet relaxes to the preferred perpendicular singlet over a few tens of picoseconds, as evidenced by a red shift of the carbonyl stretching vibration. Although our data agrees with previous studies, its interpretation is somewhat altered.  相似文献   

12.
利用飞秒分辨的激光泵浦-探测技术结合飞行时间质谱和光电子速度成像方法研究了邻二氯苯第一电子单重激发态(S1)的超快动力学.邻二氯苯的S1态振动基态寿命为(651 ± 10) ps,对应于S1振动基态向三重态的系间窜越过程.邻二氯苯S1的高振动激发9a218a2对应两个衰减通道,其中寿命为(458 ± 12) fs的超快过程对应于由处于振动激发的S1向高振动激发的基态(S0)发生的内转换过程,而寿命为(90 ± 10) ps过程则对应由S1态向三重态(T1)的系间窜越过程,电离产生的光电子能谱中长寿命的谱峰可能与系间窜越过程有关. S1态高振动态的旋轨耦合程度比低振动态的更强,导致系间窜越过程更快.  相似文献   

13.
Ultrafast photolysis of 9-diazofluorene (DAF) produces a broadly absorbing transient within the instrument time resolution (300 fs), which is assigned to an excited state of the diazo compound. The diazo excited state fragments to form fluorenylidene (Fl) in both its lowest energy singlet state (1Fl, 405-430 nm, depending on the solvent) and a higher energy singlet state (370 nm, 1Fl*). The excited singlet carbene has a lifetime of 20.9 ps in acetonitrile and decays to the lower energy singlet state (1Fl), which relaxes to the triplet ground state (3Fl) in acetonitrile, cyclohexane, benzene, and hexafluorobenzene. The equilibrium mixture of singlet and triplet fluorenylidene reacts with these solvents. Singlet fluorenylidene reacts with methanol and cyclohexene in competition with relaxation to 3Fl. One of the reaction products in methanol is the 9-fluorenyl cation. The rate of intersystem crossing (ISC) in hexafluorobenzene and other halogenated solvents is remarkably slow given that carbene ISC rates are generally fastest in nonpolar solvents. An explanation of this effect is advanced.  相似文献   

14.
Meso-tetra(hydroxyphenyl)chlorin (m-THPC) is a new photosensitizer developed for potential use in photodynamic therapy (PDT) for cancer treatment. In PDT, the accepted mechanism of tumor destruction involves the formation of excited singlet oxygen via intermolecular energy transfer from the excited triplet-state dye to the ground triplet-state oxygen. Femtosecond transient absorption measurements are reported here for the excited singlet state dynamics of m-THPC in solution. The observed early time kinetics were best fit using a triple exponential function with time constants of 350 fs, 80 ps and > or = 3.3 ns. The fastest decay (350 fs) was attributed to either internal conversion from S2 to S1 or vibrational relaxation in S2. Multichannel time-resolved absorption and emission spectroscopies were also used to characterize the excited singlet and triplet states of the dye on nanosecond to microsecond time scales at varying concentrations of oxygen. The nanosecond time-resolved absorption data were fit with a double exponential with time constants of 14 ns and 250 ns in ambient air, corresponding to lifetimes of the S1 and T1 states, respectively. The decay of the T1 state varied linearly with oxygen concentration, from which the intrinsic decay rate constant, ki, of 1.5 x 10(6) s-1 and the biomolecular collisional quenching constant, kc, of 1.7 x 10(9) M-1 s-1 were determined. The lifetime of the S1 state of 10 ns was confirmed by fluorescence measurements. It was found to be independent of oxygen concentration and longer than lifetimes of other photosensitizers.  相似文献   

15.
The ultrafast relaxation of aqueous iron(II)-tris(bipyridine) upon excitation into the singlet metal-to-ligand charge-transfer band (1MLCT) has been characterized by femtosecond fluorescence up-conversion and transient absorption (TA) studies. The fluorescence experiment shows a very short-lived broad 1MLCT emission band at approximately 600 nm, which decays in < or =20 fs, and a weak emission at approximately 660 nm, which we attribute to the 3MLCT, populated by intersystem crossing (ISC) from the 1MLCT state. The TA studies show a short-lived (<150 fs) excited-state absorption (ESA) below 400 nm, and a longer-lived one above 550 nm, along with the ground-state bleach (GSB). We identify the short-lived ESA as being due to the 3MLCT state. The long-lived ESA decay and the GSB recovery occur on the time scale of the lowest excited high-spin quintet state 5T2 lifetime. A singular value decomposition and a global analysis of the TA data, based on a sequential relaxation model, reveal three characteristic time scales: 120 fs, 960 fs, and 665 ps. The first is the decay of the 3MLCT, the second is identified as the population time of the 5T2 state, while the third is its decay time to the ground state. The anomalously high ISC rate is identical in [RuII(bpy)3]2+ and is therefore independent of the spin-orbit constant of the metal atom. To reconcile these rates with the regular quasi-harmonic vibrational progression of the 1MLCT absorption, we propose a simple model of avoided crossings between singlet and triplet potential curves, induced by the strong spin-orbit interaction. The subsequent relaxation steps down to the 5T2 state dissipate approximately 2000 cm-1/100 fs. This rate is discussed, and we conclude that it nevertheless can be described by the Fermi golden rule, despite its high value.  相似文献   

16.
We use ultrafast transient absorption spectroscopy with sub-20 fs time resolution and broad spectral coverage to directly probe the process of exciton fission in polycrystalline thin films of pentacene. We observe that the overwhelming majority of initially photogenerated singlet excitons evolve into triplet excitons on an ~80 fs time scale independent of the excitation wavelength. This implies that exciton fission occurs at a rate comparable to phonon-mediated exciton localization processes and may proceed directly from the initial, delocalized, state. The singlet population is identified due to the brief presence of stimulated emission, which is emitted at wavelengths which vary with the photon energy of the excitation pulse, a violation of Kasha's Rule that confirms that the lowest-lying singlet state is extremely short-lived. This direct demonstration that triplet generation is both rapid and efficient establishes multiple exciton generation by exciton fission as an attractive route to increased efficiency in organic solar cells.  相似文献   

17.
利用飞秒时间分辨的光电子影像技术结合时间分辨的质谱技术,研究了3-甲基吡啶分子激发态的超快过程. 实时观察到了3-甲基吡啶分子S2态向S1态高振动能级的超快内转换过程,该内转换的时间大约为910fs. 二次布居的S1态主要通过内转换衰减到基态S0,该内转换的时间尺度为2.77 ps. 光电子能谱分布和光电子角分布显示,S2态和S1态在电离的过程中跟3p里德堡态发生偶然共振. 本次实验中还用400 nm两个光子吸收的方法布居了3-甲基吡啶的3s 里德堡态. 研究表明,3s 里德堡态的寿命为62 fs,并主要通过内转换快速衰减到基态.  相似文献   

18.
2’-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.  相似文献   

19.
A femtosecond luminescence and transient absorption study of fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is reported. An emission with a lifetime component of 230 fs in the spectral region 500–560 nm is assigned to the population equilibration between electronic substates of the lowest excited triplet state, with energy dissipation by intramolecular vibrational redistribution. At shorter wavelengths a strong emission with a faster decay was observed and is attributed to a state with a higher admixture of singlet character. A slower decay on a 3 ps time scale is attributed to vibrational cooling. The results contribute to an understanding of the photophysics of transition metal complexes.  相似文献   

20.
p-Biphenylyldiazomethane was excited by femtosecond pulses of UV light in acetonitrile, in cyclohexane, and in methanol. Ultrafast photolysis produces a singlet excited state of p-biphenylyldiazomethane with lambdamax = 490 nm, and lifetimes of less than 300 fs in acetonitrile, in cyclohexane, and in methanol. The decay of the excited state is accompanied by the growth of transient absorption with lambdamax = 360 nm. The carrier of this transient absorption is attributed to singlet p-biphenylylcarbene, a result that is consistent with the predictions of TD-DFT calculations. The singlet carbene lifetimes are 200 and 77 ps in acetonitrile and cyclohexane, respectively, and are controlled by intersystem crossing to the lower energy triplet state. The transient absorption does not decay to baseline in acetonitrile, because of the formation of nitrile ylide. The equilibrium mixture of singlet and triplet p-biphenylylcarbene reacts with acetonitrile to form a nitrile ylide (lambdamax = 370 nm), and with cyclohexane by C-H insertion 1-20 ns after the laser pulse. The singlet carbene lifetime is only 7.9 ps in methanol, owing to a rapid reaction with the solvent. Reaction with the solvent gives rise, in part, to a p-biphenylylbenzyl cation (lambdamax = 450 nm, tau = 6.3 ps) in methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号