首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular beam investigations in combination with IR/UV spectroscopy offer the possibility to obtain structural information on isolated molecules and clusters. One of the demanding tasks is the discrimination of different isomers, e.g., by the use of isomer specific UV excitations. If this discrimination fails due to overlaying UV spectra of different isomers, IR/IR methods offer another possibility. Here, we present a new IR/UV/IR/UV quadruple resonance technique to distinguish between different isomers especially in the electronically excited state. Due to the IR spectra, structural changes and photochemical pathways in excited states can be assigned and identified. The method is applied to the dihydrated cluster of 3-hydroxyflavone which has been investigated as photochemically relevant system and proton wire model in the S(1) state. By applying the new IR/UV/IR/UV technique, we are able to show experimentally that both in the electronic ground (S(0)) and the electronically excited state (S(1)) two isomers have to be assigned.  相似文献   

2.
Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multireference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation.Our best estimates for the vertical excitation energies for the lowest singlet n --> pi* and pi --> pi* are 5.0 +/- 0.1 eV and 5.3 +/- 0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and +/- 0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A" and A' states leading to intensity borrowing by the forbidden transition.  相似文献   

3.
Rovibrational spectra of H3+, HN2+, and H3O+ generated in discharge jet-expansion have been studied using a difference-frequency infrared source. The rotational temperatures were determined to be 120 ± 20, 273 ± 20 and 150 ± 20 K for H3+, HN2+, and H3O+, respectively. Some dynamic phenomena of the jet-discharges are also discussed.  相似文献   

4.
Theoretical Chemistry Accounts - CNDO/2 calculations show that hydrogen bonds in the electronically excited states of +H2O and +HOCH3 systems are slightly weaker than in the ground states. The...  相似文献   

5.
6.
Methods are described for including the participation of bound electronically excited states in calculations on radical recombination reactions. These methods are illustrated by applying them to the reactions For O2, accurate ab initio potentials are used in calculations which show that the electronic degeneracy and long-range part of the potential are likely to be crucial in determining the contribution of a given electronic state to the overall reaction, as long as the state is not so weakly bound that it dissociates thermally before being electronically quenched. Weak collision effects are allowed for using a Monte Carlo technique and an assumed exponential form for the distribution of energies transferred in collisions with a third body. For larger systems it is evident that the role of bound excited states in the low-pressure regime falls rapidly as the size of the system increases. As the high-pressure limit is approached, however, the contribution of excited states is likely to come close to that expected simply on the basis of electronic degeneracy.  相似文献   

7.
We have identified and examined the excited state of the cluster-solvated, valence-bound acetonitrile anion dimer, consistent with recent experimental findings, determining that the cluster excited state is of predominantly single-excitation character. Potential energy surface scans in coordinates specific to a "dissociative" normal mode common between the excited and ground states of the valence anion as well as the ground-state neutral dimer species shed light on the proposed vibrational autodetachment mechanism, with calculated excited-state lifetime consistent with experiment.  相似文献   

8.
9.
Initial spectral results are reported from a newly constructed cavity ringdown spectrometer. The apparatus incorporates a slit-jet expansion, with or without a discharge, to produce cold sample molecules. High spectral resolution in both the near- and mid-IR is obtained by using stimulated Raman scattering of the pulsed amplified output of a cw Ti:Sa ring laser. Molecular spectra presented include the electronic near-IR transitions a (1)Delta(g)(-)<-- X (3)Sigma(g)(-) of O(2) and B (3)Pi(g)<-- A (3)Sigma(u)(+) of metastable N(2) and vibrational overtones of H(2)O (polyad 2) and the OH radical. Fundamental vibrational transitions of CH(3) (nu(3)) in the mid-IR are also observed. This apparatus has demonstrated the potential for obtaining high-resolution spectra of both reactive and non-reactive species throughout the entire IR region.  相似文献   

10.
Equilibrium geometries of the ground states of hydrogen peroxide (H(2)O(2)) and methyl hydroperoxide (CH(3)OOH) have been obtained using quadratic configuration interaction methods with correlation-consistent basis sets. These results are compared with experiments and prior calculations. The dipole moments of the ground states of these two molecules have been calculated. The results illustrate the sensitivity of this quantity to molecular geometry. Several excited states of H(2)O(2) and CH(3)OOH were calculated using the equation-of-motion coupled-cluster singles-and-doubles method. Aside from vertical excitation energies, excited state energies along the O-O, O-H, and C-O dissociation pathways were calculated. The results are expected to be of assistance in resolving discrepancies in the experimental interpretation of the UV absorption spectrum and photodissociation of CH(3)OOH.  相似文献   

11.
As a step toward a first principles characterization of the optical properties of chlorine hydrate, we have calculated the electronic absorption spectrum of a chlorine molecule trapped in dodecahedral (H2O)20 and hexakaidodecahedral (H2O)24 cages. For comparison, spectra were also calculated for an isolated Cl2 molecule as well as for selected Cl2(H2O)n, n < or =8, clusters cut out of the Cl2(H2O)20 cluster, allowing us to follow the evolution of the low-lying excited states with increasing number of surrounding water molecules. Although encapsulation of a chlorine molecule within the water cages has relatively little effect on its low-lying valence transitions, it does result in a large number of solvent-to-solute charge-transfer transitions at energies starting near 48,000 cm(-1).  相似文献   

12.
One-color (1C), two-color (2C) resonant two-photon ionization (R2PI), and mass analyzed threshold ionization (MATI) methods have been applied to study the S(1)<--S(0) transition and threshold ionization of p-methylanisole. The excitation energy of the S(1)<--S(0) transition is determined to be 35,401+/-2 cm(-1), the adiabatic ionization energy of this molecule is measured to be 63,965+/-15 and 63,972+/-5 cm(-1) by the 2C-R2PI and MATI methods. Most of the observed R2PI and MATI bands result from the in-plane ring vibrations. The frequencies of vibrations 9b, 1 and 7a are measured to be 393, 800 and 1168 cm(-1) in the S(1) state, and 412, 811 and 1220 cm(-1) in the D(0) state, respectively. This indicates the molecular structure in the D(0) state is more rigid than that in the S(1) state.  相似文献   

13.
《Chemical physics letters》1987,139(6):503-506
The rotational structure of the D 2Σ+ →A2Σ+ transition of 4HeD is highly perturbed, and this is caused by the near degeneracy of the D, ν=0 and C, ν=3 vibrational levels. A perturbation analysis is presented which yields the spectroscopic constants for both of the perturbing levels, yielding the first experimental information on a vibrationally excited state of HeH.  相似文献   

14.
The variable metric (VM) method is used to optimize molecular geometry in electronically excited states. A general expression for the first derivative of energy in the particular excited state is derived, considering configuration interaction of all singly excited configurations. A special expression for the excited states energy derivative is given for calculations with semiempirical methods of CNDO type. The geometry optimizations of a set of molecules in various excited states have been carried out by the CNDO/2 method. The results of computations have been discussed and compared with the available experimental data. A good agreement of the calculated geometries with the experimental ones has been shown in the first excited states and a relatively good agreement in the higher states, with some exceptions. Some special features of the proposed method are discussed.  相似文献   

15.
Vertical excitation energies and one-electron properties are computed for the valence excited states of 28 medium-sized organic benchmark molecules using multistate multiconfigurational second-order perturbation theory (MS-CASPT2) and the augmented correlation-consistent aug-cc-pVTZ basis set. They are compared with previously reported MS-CASPT2 results obtained with the smaller TZVP basis. The basis set extension from TZVP to aug-cc-pVTZ causes rather minor and systematic shifts in the vertical excitation energies that are normally slightly reduced (on average by 0.11 eV for the singlets and by 0.09 eV for the triplets), whereas the changes in the calculated oscillator strengths and dipole moments are somewhat more pronounced on a relative scale. These basis set effects at the MS-CASPT2 level are qualitatively and quantitatively similar to those found at the coupled cluster level for the same set of benchmark molecules. The previously proposed theoretical best estimates (TBE-1) for the vertical excitation energies for 104 singlet and 63 triplet excited states of the benchmark molecules are upgraded by replacing TZVP with aug-cc-pVTZ data that yields a new reference set (TBE-2). Statistical evaluations of the performance of density functional theory (DFT) and semiempirical methods lead to the same ranking and very similar quantitative results for TBE-1 and TBE-2, with slightly better performance measures with respect to TBE-2. DFT/MRCI is most accurate among the investigated DFT-based approaches, while the OMx methods with orthogonalization corrections perform best at the semiempirical level.  相似文献   

16.
The transition energies for the lowest energy pi --> pi* electronic excitations are calculated with the complete active space self-consistent field method (CASSCF) and with the complete active space second-order perturbation theory method (CASPT2) for the linear cyano-substituted polyacetylene cations, H-Cn-CN+, n = 4-11, and NC-Cn-CN+, n = 2-10. These systems are models for an important class of interstellar species. We demonstrate the utility of the theoretical calculations in assigning the experimental spectra.  相似文献   

17.
Excitation of a molecule from the ground state to an electronically excited state can cause changes in its geometry, dipole moment, acidity or basicity, redox potentials and solvation. Bimolecular quenching of the excited state of the probe by other molecules present in the medium can be used to determine the mobilities of molecules and estimate microviscosities and encounter probabilities in the medium. Differences in excited state acidity or basicity relative to the ground state can be employed to investigate the dynamics of ultrafast proton transfer reactions. Three areas of current interest where fluorescent probes have served to elucidate important dynamic processes of molecules in simple self-aggregating surfactant systems such as aqueous micelles and reverse micelles are considered: (a) bimolecular quenching of excited states; (b) the dynamics of solvation of excited states and (c) ultrafast intermolecular excited state proton transfer (ESPT) reactions.  相似文献   

18.
19.
First high-resolution IR spectra of jet-cooled vinyl radical in the C-H stretch region are reported. Detailed spectral assignments and least squares fits to an A-reduction Watson asymmetric top Hamiltonian yield rotational constants and vibrational origins for three A-type bands, assigned to single quantum excitation of the symmetric CH(2) stretch. Two of the observed bands arise definitively from ground state vinyl radical, as rigorously confirmed by combination differences predicted from previous midinfrared CH(2) wagging studies of Kanamori et al. [J. Chem. Phys. 92, 197 (1990)] as well as millimeter wave rotation-tunneling studies of Tanaka et al. [J. Chem. Phys. 120, 3604 (2004)]. The two bands reflect transitions out of symmetric (0(+)) and antisymmetric (0(-)) tunneling levels of vinyl radical populated at 14 K slit-jet expansion temperatures. The band origins for the lower-lower (0(+)<--0(+)) and upper-upper (0(-)<--0(-)) transitions occur at 2901.8603(7) and 2901.9319(4) cm(-1), respectively, which indicates an increase in the tunneling splitting and therefore a decrease in the effective tunneling barrier upon CH(2) symmetric stretch excitation. The third A-type band with origin at 2897.2264(3) cm(-1) exhibits rotational constants quite close to (but at high-resolution distinguishable from) the vinyl radical ground state, consistent with a CH(2) symmetric stretch hot band built on one or more quanta of excitation in a low frequency vibration. The observed CH(2) symmetric stretch bands are in excellent agreement with anharmonically scaled high level density functional theory (DFT) calculations and redshifted considerably from previous low resolution assignments. Of particular dynamical interest, Boltzmann analysis indicates that the pair of 0(+) and 0(-) tunneling bands exhibits 1:1 nuclear spin statistics for K(a)=even:odd states. This differs from the expected 3:1 ratio for feasible exchange of the two methylenic H atoms but is consistent with a 4:4 ratio predicted for interchange between all three H atoms. This suggests the novel dynamical possibility of large amplitude "roaming" of all three H atoms in vinyl radical, promoted by high internal vibrational excitation arising from dissociative electron attachment in the discharge.  相似文献   

20.
Vibrational spectra of the pyrimidine cation in the electronic ground state were measured via several intermediate states of the first excited state (00,16a1, 16a2, 16a4, 16b1, 10b1, 6b2, 6a1, 11, 41, 42 and 121) by mass-analyzed threshold ionization spectroscopy. For the first time, several vibrational modes could be assigned in the first excited and the ionic ground states. Anharmonic coupling is shown to occur in the first excited state due to Fermi resonance between the 11 and the 16a4 vibrations. From the results of the measurements and calculations presented here, pyrimidine is predicted to be planar in the first excited and the ionic ground states, and it belongs to the C2V point group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号