首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substrate identification is the key to defining molecular pathways or cellular processes regulated by proteases. Although phage display with random peptide libraries has been used to analyze substrate specificity of proteases, it is difficult to deduce endogenous substrates from mapped peptide motifs. Phage display with conventional cDNA libraries identifies high percentage of non-open reading frame (non-ORF) clones, which encode short unnatural peptides, owing to uncontrollable reading frames of cellular proteins. We recently developed ORF phage display to identify endogenous proteins with specific binding or functional activity with minimal reading frame problem. Here we used calpain 2 as a protease to demonstrate that ORF phage display is capable of identifying endogenous substrates and showed its advantage to re-verify and characterize the identified substrates without requiring pure substrate proteins. An ORF phage display cDNA library with C-terminal biotin was bound to immobilized streptavidin and released by cleavage with calpain 2. After three rounds of phage selection, eleven substrates were identified, including calpastatin of endogenous calpain inhibitor. These results suggest that ORF phage display is a valuable technology to identify endogenous substrates for proteases.  相似文献   

2.
We describe a technology for generating recombinant polyclonal antibody libraries (PCALs) that enables the creation and perpetuation of standardized mixtures of polyclonal whole antibodies specific for a multiantigen (or polyantigen). Therefore, this technology combines the advantages of targeting multiple antigenic determinants -- high avidity, low likelihood of antigen 'escape variants', and efficient mediation of effector functions, with the advantages of using monoclonal antibodies -- unlimited supply of standardized reagents and the availability of the genetic material for desired manipulations. The technology for generating recombinant polyclonal antibody libraries begins with the creation of phage display Fab (antibody) libraries. This is followed by selection of sublibraries with desired antigen specificities, and mass transfer of the variable region gene pairs of the selected sublibraries to a mammalian expression vector for generation of libraries of polyclonal whole antibodies. We review here our experiments for selection of phage display antibody libraries against microbes and tumor cells, as well as the recent literature on the selection of phage display antibody libraries to multiantigen targets.  相似文献   

3.
Phage surface display of cDNA libraries facilitates cloning, expression and rapid selection of functional gene products physically linked to their genetic information through gene product-ligand interactions. Efficient screening technologies based on selective enrichment of clones expressing desired gene products allows, within a short time, the isolation of all ligand-specific clones that are present in a library. Manual identification of clones by restriction analysis and random sequencing is unlike to be successful for the isolation of gene products derived from rare mRNA species resulting from selection of the libraries using polyvalent ligands like serum from patients. Here we describe rapid handling of large numbers of individual clones selected from molecular libraries displayed on phage surface using the power of robotics-based high throughput screening. The potential of the combination of cDNA-phage surface display, with selection for specific interactions by functional screening and robotic technology is illustrated by the isolation of more sequences potentially encoding IgE-binding proteins than postulated from Western blot analyses using extracts derived from raw material of complex allergenic sources. The subsequent application of functional enrichment and robotics-based screening will facilitate the rapid generation of information about the repertoire of protein structures involved in allergic diseases.  相似文献   

4.
Phage display libraries offer a strategy to isolate peptide ligands to target proteins and to define potential interaction sites between proteins. Recent studies have indicated a novel utility for phage display in that bacteriophage engineered to express peptide ligands to specific cell surface receptors are internalized by mammalian cells. Thus, reporter genes such as green fluorescent protein and lacZ harbored in the phage genome can be delivered to mammalian cells using targeting peptides displayed on the surface of phage. There is also the possibility to generate novel types of peptide libraries expressed intracellularly using a phage capable of inducing expression of its coding genes in human cells.  相似文献   

5.
With the human genome project approaching completion, there is a growing interest in functional analysis of gene products. The characterization of large numbers of proteins, their expression patterns and in vivo localisations, demands the use of automated technology that maintains a logistic link to the encoding genes. As a complementary approach, phage display is used for recombinant protein expression and the selection of interacting (binding) molecules. Cloning of libraries in filamentous bacteriophage or phage mid vectors provides a physical link between the expressed protein and its encoding DNA sequence. High-throughput technology for automated library handling and phage display selection has been developed using picking-spotting robots and a module for pin-based magnetic particle handling. This system enables simultaneous interaction screening of libraries and the selection of binders to different target molecules at high throughput. Target molecules are either displayed on high-density filter membranes (protein filters) or tag-bound to magnetic particles and can be handled as native ligands. Binding activity is confirmed by magnetic particle ELISA in the microtitre format. The whole procedure from immobilisation of target molecules to confirmed clones of binders is automatable. Using this technology, we have selected human scFv antibody fragments against expression products of human cDNA libraries.  相似文献   

6.
Genetic engineering allows modification of bacterial and bacteriophage genes, which code for surface proteins, enabling display of random peptides on the surface of these microbial vectors. Biologic peptide libraries thus formed are used for high-throughput screening of clones bearing peptides with high affinity for target proteins. There are reports of many successful affinity selections performed with phage display libraries and substantially fewer cases describing the use of bacterial display systems. In theory, bacterial display has some advantages over phage display, but the two systems have never been experimentally compared. We tested both techniques in selecting streptavidin-binding peptides from two commercially available libraries. Under similar conditions, selection of phage-displayed peptides to model protein streptavidin proved convincingly better.  相似文献   

7.
We describe a high-throughput, quantitative technology for fast identification of all different clones present in selectively enriched phage surface-displayed cDNA libraries. The strategy is based on a combination of phage display and high-density arrays. To demonstrate the utility of the method cDNAs of Aspergillus fumigatus cloned into phagemid pJuFo were expressed on the tip of filamentous M13 phage and affinity-selected on solid phase-immobilized serum IgE from allergic patients. Enriched phagemid libraries were amplified in bacteria, plated and arrayed into 384-well microtitre plates by robotic colony picking. cDNA inserts were amplified by high-throughput PCR and gridded onto high-density filter membranes. Filters were iteratively probed with randomly-sequenced inserts until all clones were identified. Eighty-one different sequences encoding IgE-binding proteins likely to cover a large part of the allergen repertoire of the mould were found. This approach represents a widely applicable method for rapid high-throughput identification of all individual cDNAs present in selectively enriched libraries.  相似文献   

8.
The cloning of genes based on protein function has become a powerful tool for protein discovery and should play an important role in proteomics in general. We have recently reported a technique for the functional identification of protein targets by combining traditional affinity chromatography with cDNA phage display. This procedure, referred to as display cloning, directly couples biologically active natural products to the gene of their protein cellular target. We now report the cloning of a human gene, the domain of F1 ATP synthase, using a synthetic scaffold molecule which serves as a prototype for a diverse chemical library. The ability to select genes from cDNA libraries using probes from combinatorial libraries would greatly increase the number of small molecule/protein interactions that can be identified. This method might prove valuable in furthering our understanding of biology and its application toward drug development.  相似文献   

9.
Technology has been developed to display small molecules on phage particles. This innovation enables the generation of libraries of phage-tagged compounds with novel properties that are well suited for in vivo assays.  相似文献   

10.
Considerations on antibody-phage display methodology   总被引:2,自引:0,他引:2  
For almost 15 years phage display is being used for the selection of specific antigen-binders from artificial libraries of single chain antibodies. Filamentous phages have been developed in a way to express foreign proteins on the surface and at the same time carrying the genetic information of the surface expressed molecule within the phage capsid. This property guarantees the coupling of phenotype and genotype during phage amplification and affinity selection. The possibility to generate large antibody libraries and the simplified antibody-backbone of a single chain antibody has made antibody-phage display to a powerful tool for the development of new therapeutics against various human diseases. In this review we discuss the general principles and latest developments and applications in antibody phage display technology.  相似文献   

11.
Since its introduction in 1985, phage display technology has been successfully used in projects aimed at deciphering biological processes and isolating molecules of practical value in several applications. Bacteriophage lambda, representing a classical molecular cloning and expression system has also been exploited for generating large combinatorial libraries of small peptides and protein domains exposed on its capsid. More recently, lambda display has been consistently and successfully employed for domain mapping, antigen discovery and protein interaction studies or, more generally, in functional genomics. We show here the results obtained by the use of large libraries of cDNA and genomic DNA for the molecular dissection of the human B-cell response against complex pathogens, including protozoan parasites, bacteria and viruses. Moreover, by reviewing the experimental work performed in recent investigations we illustrate the potential of lambda display in the diagnostics field and for identifying antigens useful as targets for vaccine development.  相似文献   

12.
Peptide-based molecular probes identified by bacteriophage (phage) display technology expand the peptide repertoire for in vivo diagnosis and therapy of cancer. Numerous peptides that bind cancer-associated antigens have been discovered by panning phage libraries. However, until now only few of the peptides selected by phage display have entered clinical applications. The success of phage derived peptides essentially depends on the quality of the library screened. This review summarizes the methods to achieve highly homogenous libraries that cover a maximal sequence space. Biochemical and chemical strategies for the synthesis of DNA libraries and the techniques for their integration into the viral genome are discussed in detail. A focus is set on the methods that enable the exclusion of disturbing sequences. In addition, the parameters that define the variability, the minimal numbers of copies per library and the use of alternating panning cycles to avoid the loss of selected hits are evaluated.  相似文献   

13.
Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.  相似文献   

14.
A short peptide as mimic for the hemopoietic growth factor erythropoietin (containing 165 amino acids) could be identified with the aid of peptide libraries on phage surfaces (phage display). The crystal structure of a peptide dimer complexed with two erythropoietin receptors (shown on the right) provides an insight into the molecular basis of this protein mimicry.  相似文献   

15.
16.
Site-specific protein labeling with Escherichia coli biotin ligase (BirA) has been used to introduce fluorophores, quantum dots (QDs), and photocross-linkers onto recombinant proteins fused to a 15-amino acid acceptor peptide (AP) substrate for BirA and expressed on the surface of living mammalian cells. Here, we used phage display to engineer a new and orthogonal biotin ligase-AP pair for site-specific protein labeling. Yeast biotin ligase (yBL) does not recognize the AP, but we discovered a new 15-amino acid substrate for yBL called the yeast acceptor peptide (yAP), using two generations of phage display selection from 15-mer peptide libraries. The yAP is not recognized by BirA, and thus, we were able to specifically label AP and yAP fusion proteins coexpressed in the same cell with differently colored QDs. We fused the yAP to a variety of recombinant proteins and demonstrated biotinylation by yBL at the N-terminus, C-terminus, and within a flexible internal region. yBL is extremely sequence-specific, as endogenous proteins on the surface of yeast and HeLa cells are not biotinylated. This new methodology expands the scope of biotin ligase labeling to two-color imaging and yeast-based applications.  相似文献   

17.
Selections from phage-displayed combinatorial peptide libraries are an effective strategy for identifying peptide ligands to target proteins. Existing protocols for constructing phage-displayed libraries utilize either ligation into double-stranded phage DNA or Kunkel mutagenesis with single-stranded phagemid DNA. Although the Kunkel approach rapidly provides library sizes of up to 10(11), as many as 20% of the phagemids may be non-recombinant. With several modifications to current Kunkel protocols, we have generated peptide libraries with sizes of up to 10(11) clones and recombination frequencies approaching 100%. The production of phage libraries, as opposed to phagemid libraries, simplifies selection experiments by eliminating the need for helper phage. Our approach relies upon the presence of an amber stop codon in the coding region of gene III of bacteriophage M13. Oligonucleotides containing randomized stretches of DNA are annealed to the phage genome such that the randomized region forms a heteroduplex with the stop codon. The oligonucleotide is then enzymatically extended to generate covalently-closed, circular DNA, which is electroporated into a non-suppressor strain of Escherichia coli. If the amber stop codon is present in the DNA molecule, protein III is not synthesized and the phage cannot propagate itself. This method is customizable for the display of either random or focused peptide libraries. To date, we have constructed 22 different libraries ranging from 8-20 amino acids in length, utilizing complete or reduced codon sets.  相似文献   

18.
Combinatorial chemistry and biology have become popular methods for the identification of bio-active molecules in drug discovery. A widely used technique in combinatorial biology is "phage display", by which peptides, antibody fragments and enzymes are displayed on the surface of bacteriophages, and can be selected by simple procedures of biopanning. The construction of phage libraries of peptides or antibody fragments provides a huge source of ligands and bio-active molecules that can be isolated from the library without laborious studies on antigen characteristics and prediction of ligand structure. This "irrational" approach for the construction of new drugs is extremely rapid and is now used by thousands of laboratories world-wide. The bottleneck in this procedure is the availability of large reliable libraries that can be used repeatedly over the years without loss of ligand expression and diversity. Construction of personalized libraries is therefore important for public and private laboratories engaged in the isolation of specific molecules for therapeutic or diagnostic use. Here we report the general strategies for constructing large phage peptide and antibody libraries, based on the experience of researchers who built the world's most widely used libraries. Particular attention is paid to advanced strategies for the construction, preservation and panning.  相似文献   

19.
Phage display: selecting straws instead of a needle from a haystack   总被引:1,自引:0,他引:1  
An increasing number of peptides with specific binding affinity to various protein and even non-protein targets are being discovered from phage display libraries. The power of this method lies in its ability to efficiently and rapidly identify ligands with a desired target property from a large population of phage clones displaying diverse surface peptides. However, the search for the needle in the haystack does not always end successfully. False positive results may appear. Thus instead of specific binders phage with no actual affinity toward the target are recovered due to their propagation advantages or binding to other components of the screening system, such as the solid phase, capturing reagents, contaminants in the target sample or blocking agents, rather than the target. Biopanning experiments on different targets performed in our laboratory revealed some previously identified and many new target-unrelated peptide sequences, which have already been frequently described and published, but not yet recognized as target-unrelated. Distinguishing true binders from false positives is an important step toward phage display selections of greater integrity. This article thoroughly reviews and discusses already identified and new target-unrelated peptides and suggests strategies to avoid their isolation.  相似文献   

20.
Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein's activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号