首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H8 :O2 : H2O : N2 = 4.4: 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.  相似文献   

2.
Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.The catalysts have been characterized by N2 adsorption-desorption,temperature-programmed desorption (TPD) of NH3,SEM and XRD.Influence of water vapor on the catalytic performance,particularly on the selectivities to acetic acid and acrylic acid,has also been studied.The selectivity to acrylic acid was improved significantly by the doping of alkaline earth metals to Mo-V-Sb-O x catalysts.The surface acidic sites of the catalyst decreased with the doping of the catalyst with alkaline earth metals,which ultimately was found to be beneficial for obtaining high selectivity to acrylic acid.The catalytic activity and product selectivities were found to be influenced by the reaction temperature,C3H8/O2 ratio and space velocity.A significant improvement in the selectivity to acrylic acid has also been observed by the addition of water vapor in the feed of propane and oxygen in the oxidation of propane.  相似文献   

3.
杂多化合物催化丙烷的选择性氧化   总被引:5,自引:0,他引:5  
杂多化合物由杂多阴离子和阳离子组成,杂多阴离子具有一定的空间结构,多种不同结合强度的晶格氧能够在氧化-还原反应中起传递电子和氧的作用。杂多化合物具有很强的酸性,可用作双功能催化剂。本文以磷、钼、钒杂多酸中掺杂过渡金属离子Cs^2 、Cu^2 、Fe^3 为催化剂,对丙烷氧化反应进行了研究。  相似文献   

4.
在复合金属氧化物催化剂上丙烷直接氧化制丙烯酸   总被引:3,自引:0,他引:3  
丙烷直接氧化制丙烯酸是近年来催化氧化的热点课题。MoVTe(Sb)NbO复合金属氧化物催化剂是该反应最重要的一类催化剂。本文对该类催化剂的制备化学包括活化方式以及决定催化性能的主要活性相结构等方面的新近认识进行了系统评述;依据丙烷催化转化的反应途径,总结了有关催化剂元素组分在反应中的作用与功能的最新进展,调变催化剂的粒子尺寸与形貌、晶相组成与结构、表面酸碱性与氧化还原性是获得优良催化性能的关键因素。  相似文献   

5.
《Mendeleev Communications》2021,31(5):712-714
Gas-phase oxidative carbonylation of methane was first performed on ZSM-5 zeolites. The addition of water vapor to a mixture of carbonylation gases leads to a multiple (by two orders of magnitude) increase in acetic acid yield. Zeolites with high acidity, primarily Brønsted acidity, favor the target product formation.  相似文献   

6.
Different methods were used to eliminate the negative effect of surface Te0 in Mo-V-Te-Nb-O catalysts. The characterization and catalytic results showed that the best catalytic performance was obtained on the catalyst prepared by addition of HNO3, and the excellent catalytic behavior could be attributed to the elimination of surface Te0 and the optimum synergetic effect between the M1 and M2 phases.  相似文献   

7.
组合催化剂上丙烷选择氧化制丙烯酸   总被引:1,自引:0,他引:1  
方雯  葛庆杰  俞佳枫  徐恒泳 《催化学报》2011,32(6):1022-1026
考察了在C3H8氧化脱氢的NiZrO催化剂和C3H6选择氧化的Mo基催化剂组成的组合催化剂上C3H8选择氧化制取丙烯酸的反应性能.结果表明,两个催化剂比例适当时,反应的丙烯酸收率可达最大.优化温度、烷氧比、空速以及N2含量等反应条件的结果发现,反应体系中O2的匮乏会严重影响反应性能.在有氧分布器的反应装置中对所选组合催化剂在优化的反应条件下进行了30h稳定性测试,结果表明,在340oC,反应性能基本稳定,C3H8转化率和丙烯酸选择性可分别维持在~20%和~74%.  相似文献   

8.
The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts.  相似文献   

9.
Both the partially reduced and non-reduced multi-component heteropoly compound catalysts with Keggin structure were prepared and used for the selective oxidation of propane. The catalysts were characterized by IR, H2-TPR, NH3-TPD, SEM and XRD. The addition of Cs increased the selectivity of acrylic acid and acetic acid. The selective oxidation performance was greatly improved with the addition of As. Among all of the tested catalysts, the catalytic performance of the Cs1.8Fe0.16HxPVAs0.4Mo11O40 (non-reduced) was the best and the maximum yield of acrylic acid reached 16.42%.  相似文献   

10.
Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide (VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and the re-oxidation of catalyst were implemented alternately in the presence of water vapor. The principal products are acrylic acid (AA),acetic acid (HAc), and carbon oxides. In addition, small amounts of C1 and C2 hydrocarbons were also found, molar ratio of AA to HAc is 1.4-2.2. The active oxygen species are those adsorbed on catalyst surface firmly and/or bound to catalyst lattice, i.e. lattice oxygen; the selective oxidation of propane on VPO catalysts can be carried out in a circulating fluidized bed (CFB) riser reactor. For propane oxidation over VPO catalysts, the effects of reaction temperature in a pulse reactor were found almost the same as in a steady-state flow reactor. That is, as the reaction temperature increases, propane conversion and the amount of C1 C2 hydrocarbons in the product increase steadily, while selectivity to acrylic acid and to acetic acid increase prior to 350℃ then begin to drop at temperatures higher than 350℃, and yields of acrylic acid and of acetic acid attained maximum at about 400℃. The maximum yields of acrylic acid and of acetic acid for a single-pass are 7.50% and 4.59% respectively, with 38.2% propane conversion. When theamount of propane pulsed decreases or the amount of catalyst loaded increases, the conversion increases but the selectivity decreases. Increasing the flow rate of carrier gases causes the conversion pass through a minimum but selectivity and yields pass through a maximum. In a fixed bed reactor, it is hard to obtainhigh selectivity at a high reaction conversion due to the further degradation of acrylic acid and acetic acid even though propane was oxidized by the lattice oxygen. The catalytic performance can be improved inthe presence of excess propane. Propylene can be oxidized by lattice oxygen of VPO catalyst at 250℃, nevertheless, selectivity to AA and to HAc are even lower, much more acetic acid was produced (molar ratio of AA to HAc is 0.19:1-0.83:1) though the oxidation products are the same as from propane.  相似文献   

11.
The present work focuses on the partial oxidation of methyl ethyl ketone to acetic acid over TiO2 supported vanadia catalysts with V loadings from 1 to 13.5 wt.%. In order to elucidate the relation between catalytic activity and the structure of the catalysts, the catalysts were also characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction with hydrogen (TPR), and temperature programmed desorption of lattice oxygen (TPD-O2). The investigations show that with increasing V loading the MEK conversion increased whereas the turn-over frequency decreased. At lower V loading (1–4 wt.%) the total oxidation to COx was favoured and the selectivities to acetic acid and other oxygenated products were low. The highest selectivities to acetic acid were achieved at V loadings of 4–6 wt.%. Based on literature data and our results, a scheme of the reaction pathways for the partial oxidation of MEK to AcOH and other by-products was developed.  相似文献   

12.
Combustion of dilute propane (0.9 mol%) over Mn-doped ZrO2 catalysts prepared using different precipitating agents (viz. TMAOH, TEAOH, TPAOH, TBAOH and NH4OH), having different Mn/Zr ratios (0.05—0.67) and calcined at different temperatures (500—800°C), has been thoroughly investigated at different temperatures (300—500°C) and space velocities (25,000–100,000 cm3 g−1 h−1) for controlling propane emissions from LPG-fuelled vehicles. Mn-doped ZrO2 catalyst shows high propane combustion activity, particularly when its ZrO2 is in the cubic form, when its Mn/Zr ratio is close to 0.2 and when it is prepared using TMAOH as a precipitating agent and calcined at 500—600°C. Pulse reaction of propane in the absence of free-O2 over Mn-doped ZrO2 (cubic) and Mn-impregnated ZrO2 (monoclinic) catalysts has also been investigated for studying the relative reactivity and mobility of the lattice oxygen of the two catalysts. Both reactivity and mobility of the lattice oxygen of Mn-doped ZrO2 are found to be much higher than that of Mnimpregnated ZrO2. Propane combustion over Mn-doped ZrO2 catalyst involves a redox mechanism  相似文献   

13.
Different Fe-containing catalysts (pure Fe2O3, Fe2O3 supported on active carbon or g-Al2O3, and hydrotalcite derived Mg-Fe oxides) were examined in the dehydrogenation of propane performed in an Ar or CO2 atmosphere at 873 K. A promoting effect of carbon dioxide was found for the Fe2O3 and Fe2O3/AC samples. The catalytic results are discussed in terms of redox properties of the catalysts determined by temperature-programmed reduction (TPR). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
A novel mixed sol method was developed for the preparation of supported catalysts. Analyses by means of XRD and BET show that a 40%AgBiVMoO/γ-Al2O3 catalyst prepared by this method possessed high specific surface area and high dispersion of the active phase. As a result, high acrylic acid selectivity of 8.5% was obtained when the catalyst was used in the reaction of propane partial oxidation to acrylic acid in a fixed-bed reactor.  相似文献   

15.
王鉴  赵如松 《催化学报》2001,22(5):484-486
丙烷选择氧化制取丙烯酸(AA)和乙酸(HAc)是氧化深度大、反应过程复杂、包含氧化脱氢和选择性氧种进入分子等多重步骤的多相催化过程. 从催化剂设计的角度看,适用于该反应的催化剂必须在较温和的条件下对烷烃具有氧化脱氢的能力. 钒磷混合氧化物(VPO)是目前少有的这类催化剂. 在影响其催化性能的众多因素中,n(P)/n(V)比是个关键参数;丙烷-氧共进料连续流动氧化反应的适宜n(P)/n(V)比为1.05~1.15[1~4]. 丙烷在VPO催化剂上的选择氧化按晶格氧氧化机制进行,适合于循环流化床提升管(CFBR)反应工艺[5]. CFBR工艺在大幅度提高原料中烃的浓度、抑制深度氧化、降低未反应原料的循环费用等诸多方面具有明显的优势[6],特别适用于丙烷等小分子烷烃的选择氧化. 在CFBR工艺中,与烷烃起反应的氧全部来自催化剂. 因此,为了提高经济效益,要求催化剂有尽可能大的可逆储氧量. 本文用脉冲反应器考察了催化剂P/V比对丙烷氧化反应性能的影响.  相似文献   

16.
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=1/3 and calcined at 300°C shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200°C and 85% NO conversion at 250°C with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250°C). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnOx on the surface and the abundance of Mn3+ and Ti3+ species. The addition of Ce into MnOx/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.  相似文献   

17.
采用不同浸渍方法制备了系列Ag-Mn/γ-Al_2O_3-TiO_2催化剂,利用BET、XRD、TEM、XPS和H_2-TPR等技术对催化剂进行了表征,通过丙烷催化燃烧反应考察了催化性能。结果表明,与常规浸渍法相比,柠檬酸络合浸渍法促进了催化剂表面Ag与Mn颗粒的分散及加强了Ag与Mn之间的相互作用,从而提高了活性氧物种的相对含量和催化剂的低温还原性能,进而促进丙烷催化燃烧活性的提升。其中,络合浸渍法制备的Ag_1Mn_3/γ-Al_2O_3-TiO_2催化剂在263℃时丙烷转化率即可达90%。  相似文献   

18.
A novel catalyst Rh/Ys for the carbonylation of methanol to acetic acid with CH3I as the promoter shows excellent activity and selectivity.The reaction is kinetically controlled.The reaction rate is in proportion to the concentration of Rh and CH3I but has nothing to do with those of CH3OHH and CO.The surface active energy is Ea ~51.02 kJ/mol.A mechanism is also proposed.  相似文献   

19.
Considering energy shortage, large molecules in corn cob and easy separation of solid catalysts, nano oxides are used to transform corn cob into useful chemicals. Because of the microcrystals, nano oxides offer enough accessible sites for cellulose, hemicellulose and monosaccharide from corn cob hydrolysis and oxidant. Chemical conversion of corn cob to organic acids is investigated over nano ceria, alumina, titania and zirconia under various atmospheres. Liquid products are mainly formic and acetic acids. A small amount of other compounds, such as D-xylose,D-glucose, arabinose and xylitol are also detected simultaneously. The yield of organic acids reaches 25%–29% over the nano oxide of ceria,zirconia and alumina with 3 h reaction time under 453 K and 1.2 MPa O2. The unique and fast conversion of corn cob is directly approached over the nano oxides. The results are comparative to those of biofermentation and offer an alternative method in chemically catalytic conversion of corn cob to useful chemicals in a one-pot chemical process.  相似文献   

20.
在完全液相法研究发现的基础上,选用酸、碱性硅溶胶,制备Cu/Zn/Al/Si浆状催化剂,采用X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、红外光谱分析(FT-IR)、氮气吸附、氨气程序升温脱附(NH3-TPD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等对催化剂进行了表征。结果表明,两类硅溶胶引入Cu/Zn/Al催化体系后,与前驱体制备环境一致的酸性硅溶胶能显著提高催化剂的CO的转化率和二甲醚的选择性,最高分别可达65.38%和76.26%。酸性硅溶胶削弱了Cu与其他组分的相互作用力,催化剂表现为易于还原、晶粒度大,暴露出丰富的反应所需的Cu0活性晶面。此外,硅溶胶的酸碱性质还改变催化剂酸中心的强度和数量且使强、弱酸中心均向低温方向迁移,酸性硅胶制备的催化剂中弱酸中心数量多,进而提高了催化剂活性和二甲醚的选择性。大比表面积和介孔孔隙丰富的催化剂孔结构亦有利于催化剂活性和二甲醚选择性的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号