首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of CH(3)C(O)O(2) with HO(2) has been investigated at 296 K and 700 Torr using long path FTIR spectroscopy, during photolysis of Cl(2)/CH(3)CHO/CH(3)OH/air mixtures. The branching ratio for the reaction channel forming CH(3)C(O)O, OH and O(2) (reaction ) has been determined from experiments in which OH radicals were scavenged by addition of benzene to the system, with subsequent formation of phenol used as the primary diagnostic for OH radical formation. The dependence of the phenol yield on benzene concentration was found to be consistent with its formation from the OH-initiated oxidation of benzene, thereby confirming the presence of OH radicals in the system. The dependence of the phenol yield on the initial peroxy radical precursor reagent concentration ratio, [CH(3)OH](0)/[CH(3)CHO](0), is consistent with OH formation resulting mainly from the reaction of CH(3)C(O)O(2) with HO(2) in the early stages of the experiments, such that the limiting yield of phenol at high benzene concentrations is well-correlated with that of CH(3)C(O)OOH, a well-established product of the CH(3)C(O)O(2) + HO(2) reaction (via channel (3a)). However, a delayed source of phenol was also identified, which is attributed mainly to an analogous OH-forming channel of the reaction of HO(2) with HOCH(2)O(2) (reaction ), formed from the reaction of HO(2) with product HCHO. This was investigated in additional series of experiments in which Cl(2)/CH(3)OH/benzene/air and Cl(2)/HCHO/benzene/air mixtures were photolysed. The various reaction systems were fully characterised by simulations using a detailed chemical mechanism. This allowed the following branching ratios to be determined: CH(3)C(O)O(2) + HO(2)--> CH(3)C(O)OOH + O(2), k(3a)/k(3) = 0.38 +/- 0.13; --> CH(3)C(O)OH + O(3), k(3b)/k(3) = 0.12 +/- 0.04; --> CH(3)C(O)O + OH + O(2), k(3c)/k(3) = 0.43 +/- 0.10: HOCH(2)O(2) + HO(2)--> HCOOH + H(2)O + O(2), k(17b)/k(17) = 0.30 +/- 0.06; --> HOCH(2)O + OH + O(2), k(17c)/k(17) = 0.20 +/- 0.05. The results therefore provide strong evidence for significant participation of the radical-forming channels of these reactions, with the branching ratio for the title reaction being in good agreement with the value reported in one previous study. As part of this work, the kinetics of the reaction of Cl atoms with phenol (reaction (14)) have also been investigated. The rate coefficient was determined relative to the rate coefficient for the reaction of Cl with CH(3)OH, during the photolysis of mixtures of Cl(2), phenol and CH(3)OH, in either N(2) or air at 296 K and 760 Torr. A value of k(14) = (1.92 +/- 0.17) x 10(-10) cm(3) molecule(-1) s(-1) was determined from the experiments in N(2), in agreement with the literature. In air, the apparent rate coefficient was about a factor of two lower, which is interpreted in terms of regeneration of phenol from the product phenoxy radical, C(6)H(5)O, possibly via its reaction with HO(2).  相似文献   

2.
《Chemical physics letters》1987,139(6):513-518
Flash photolysis kinetic absorption spectroscopy was used to investigate the gas phase reaction between hydroperoxy (HO2) and methylperoxy (CH3O2) radicals at 298 K. Due to the large difference between the self-reactivities of the two radicals, first- or second-order kinetic conditions could not be maintained for either species. Thus, the rate constant for the cross reaction was determined from computer-modeled fits of the radical absorption decay curves, at wavelengths between 215 and 280 nm. This procedure yielded k = 2.9 × 10−12 cm3 molecule−1 s−1 independent of total pressure (using N2) between 25 and 600 Torr, and of the partial pressure of water vapor (up to 11.6 Torr). There was also no effect of water vapor on the rate constant for the self-reaction of methylperoxy radicals.  相似文献   

3.
A direct kinetics study of the temperature dependence of the CH2O branching channel for the CH3O2 + HO2 reaction has been performed using the turbulent flow technique with high‐pressure chemical ionization mass spectrometry for the detection of reactants and products. The temperature dependence of the CH2O‐producing channel rate constant was investigated between 298 and 218 K at a pressure of 100 Torr, and the data were fitted to the following Arrhenius expression: 1.6 × 10?15 × exp[(1730 ± 130)/T] cm3 molecule?1 s?1. Using the Arrhenius expression for the overall rate of the CH3O2 + HO2 reaction and this result, the 298 K branching ratio for the CH2O producing channel is measured to be 0.11, and the branching ratio is calculated to increase to a value of 0.31 at 218 K, the lowest temperature accessed in this study. The results are compared to the analogous CH3O2 + CH3O2 reaction and the potential atmospheric ramifications of significant CH2O production from the CH3O2 + HO2 reaction are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 363–376, 2001  相似文献   

4.
5.
The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 ? C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10?12 cm3 molecule?1 s?1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10?12 cm3 molecule?1 s?1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A systematic theoretical study of the reactions of HO2 with RO2 has been carried out. The major concern of the present work is to gain insight into the reaction mechanism and then to explain experimental observations and to predict new product channels for this class of reactions of importance in the atmosphere. In this paper, the reaction mechanisms for two reactions, namely, HO2 + CH3O2 and HO2 + CH2FO2, are reported. Both singlet and triplet potential energy surfaces are investigated. The complexity of the present system makes it impossible to use a single ab initio method to map out all the reaction paths. Various ab initio methods including MP2, CISD, QCISD(T), CCSD(T), CASSCF, and density function theory (B3LYP) have been employed with the basis sets ranging from 6-31G(d) to an extrapolated complete basis set (CBS) limit. It has been established that the CCSD(T)/cc-pVDZ//B3LYP/6-311G(d,p) scheme represents the most feasible method for our systematic study. For the HO2 + CH3O2 reaction, the production of CH3OOH is determined to be the dominant channel. For the HO2 + CH2FO2 reaction, both CH2FOOH and CHFO are major products, whereas the formation of CHFO is dominant in the overall reaction. The computational findings give a fair explanation for the experimental observation of the products.  相似文献   

7.
The kinetics and the mechanism of the reaction CH(3)C(O)O(2)+ HO(2) were reinvestigated at room temperature using two complementary approaches: one experimental, using flash photolysis/UV absorption technique and one theoretical, with quantum chemistry calculations performed using the density functional theory (DFT) method with the three-parameter hybrid functional B3LYP associated with the 6-31G(d,p) basis set. According to a recent paper reported by Hasson et al., [J. Phys. Chem., 2004, 108, 5979-5989] this reaction may proceed by three different channels: CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OOH + O(2) (1a); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OH + O(3) (1b); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)O + OH + O(2) (1c). In experiments, CH(3)C(O)O(2) and HO(2) radicals were generated using Cl-initiated oxidation of acetaldehyde and methanol, respectively, in the presence of oxygen. The addition of amounts of benzene in the system, forming hydroxycyclohexadienyl radicals in the presence of OH, allowed us to answer that channel (1c) is <10%. The rate constant k(1) of reaction (1) has been finally measured at (1.50 +/- 0.08) x 10(-11) cm(3) molecule(-1) s(-1) at 298 K, after having considered the combination of all the possible values for the branching ratios k(1a)/k(1,)k(1b)/k(1,)k(1c)/k(1) and has been compared to previous measurements. The branching ratio k(1b)/k(1), determined by measuring ozone in situ, was found to be equal to (20 +/- 1)%, a value consistent with the previous values reported in the literature. DFT calculations show that channel (1c) is also of minor importance: it was deduced unambiguously that the formation of CH(3)C(O)OOH + O(2) (X (3)Sigma(-)(g)) is the dominant product channel, followed by the second channel (1b) leading to CH(3)C(O)OH and singlet O(3) and, much less importantly, channel (1c) which corresponds to OH formation. These conclusions give a reliable explanation of the experimental observations of this work. In conclusion, the present study demonstrates that the CH(3)C(O)O(2)+ HO(2) is still predominantly a radical chain termination reaction in the tropospheric ozone chain formation processes.  相似文献   

8.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

9.
The "reaction force" F(R(c)) is the negative derivative of a system's potential energy V(R(c)) along the intrinsic reaction coordinate of a process. If V(R(c)) goes through a maximum, as is commonly the case, then F(R(c)) has a characteristic profile: a negative minimum followed by zero at the transition state and then a positive maximum. These features reflect four phases of the reaction: an initial one of reactant preparation, followed by two of transition to products, and then relaxation of the latter. In this study, we have analyzed, in these terms, a gas-phase S(N)2 substitution, selected to be CH3Cl + H2O --> CH3OH + HCl. We examine, at the B3LYP/6-31G level, the geometries, energetics, and molecular surface electrostatic potentials, local ionization energies, and internal charge separation.  相似文献   

10.
Several reaction pathways on the potential energy surface (PES) for the reaction of CH3O2 radicals with Br atoms are examined using both ab initio and density functional methods. Analysis of the PES suggests the presence of the stable intermediates CH3OOBr and CH3OBrO. CH3OOBr is calculated to be more stable than CH3OBrO by 9.7 kcal mol(-1) with a significant barrier preventing formation of CH3OBrO via isomerization of CH3OOBr. The relative importance of bi- and termolecular product channels resulting from the initially formed CH3OOBr adduct are assessed based on calculated barriers to the formation of CH2OO + HBr, CH3O + BrO, CH3Br + O2, and CH2O + HOBr.  相似文献   

11.
The fast flow method with laser induced fluorescence detection of CH3C(O)CH2 was employed to obtain the rate constant of k1 (298 K) = (1.83 ± 0.12 (1σ)) × 1010 cm3 mol?1 s?1 for the reaction CH3C(O)CH2 + HBr ? CH3C(O)CH3 + Br (1, ?1). The observed reduced reactivity compared with n‐alkyl or alkoxyl radicals can be attributed to the partial resonance stabilization of the acetonyl radical. An application of k1 in a third law estimation provides ΔfH(CH3C(O)CH2) values of ?24 kJ mol?1 and ?28 kJ mol?1 depending on the rate constants available for reaction ( ‐1 ) from the literature. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 32–37, 2006  相似文献   

12.
The possible structures and isomerizations of H2C=C(OH)Li are studied theoretically by the gradient analytical method at RHF/6-31+G level. According to these results, reactions of H2C=C(OH)Li with CH3 + and CH 3 - are investigated thoroughly. When H2C=C(OH)Li reacts with CH 3 + , HzC=C(OH)Li firstly changes from structure1 to structure4, and then combines with CH3 +. In this reaction, the configuration of central carbon is retained. When H2C=C(OH)Li reacts with CH 3 - , structure1 firstly breaks its C-O bond to give contact ion-pair. Then through transition state16 which is similar to structure2, the attack of CH 3 - from the opposite side of-OH replaces-OH group and inverts the configuration of carbenoid carbon atom. All the results show that the ambident reactivity of carbenoid has close relationship with the stability of special structures. Project supported by the National Natural Science Foundation of China (Grant No. 29773025).  相似文献   

13.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

14.
CH3O2·+ClO气相反应的密度泛函理论研究   总被引:1,自引:1,他引:1  
用密度泛函方法在CCSD(T)/ 6-311++G// B3LYP/ 6-311G**水平上研究了气相反应CH3O2*+ClO的反应机理.得到了不同能量产物的可能的反应通道,获得反应势能面.整个反应过程为多通道反应,经过多个步骤完成,共找到7个中间体和10个过渡态,产物1CH3OCl+3O2(P1)和1 CH2O+1HOOCl(P4)为能量较低产物,通道1a:R→IM1→TS1/ 3→IM3→P1,4a:R→IM1→TS1/ P4→P4和4b:R→IM2→TS2/ P4→P4为较为可行的反应通道.  相似文献   

15.
The decomposition of dimethyl peroxide (DMP) was studied in the presence and absence of added NO2 to determine rate constants k1 and k2 in the temperature range of 391–432°K: The results reconcile the studies by Takezaki and Takeuchi, Hanst and Calvert, and Batt and McCulloch, giving log k1(sec?1) = (15.7 ± 0.5) - (37.1 ± 0.9)/2.3 RT and k2 ≈ 5 × 104M?1· sec?1. The disproportionation/recombination ratio k7b/k7a = 0.30 ± 0.05 was also determined: When O2 was added to DMP mixtures containing NO2, relative rate constants k12/k7a were obtained over the temperature range of 396–442°K: A review of literature data produced k7a = 109.8±0.5M?1·sec?1, giving log k12(M?1·sec?1) = (8.5 ± 1.5) - (4.0 ± 2.8)/2.3 RT, where most of the uncertainty is due to the limited temperature range of the experiments.  相似文献   

16.
We present a direct ab initio dynamics study on the hydrogen abstraction reaction CH2O + HO2 --> CHO + H2O2, which is predicted to have four possible reaction channels caused by different attacking orientations of HO2 radical to CH2O. The structures and frequencies at the stationary points and the points along the minimum energy paths (MEPs) of the four reaction channels are calculated at the B3LYP/cc-pVTZ level of theory. Energetic information of stationary points and the points along the MEPs is further refined by means of some single-point multilevel energy calculations (HL). The rate constants of these channels are calculated using the improved canonical variational transition-state theory with the small-curvature tunneling correction (ICVT/SCT) method. The calculated results show that, in the whole temperature range, the more favorable reaction channels are Channels 1 and 3. The total ICVT/SCT rate constants of the four channels at the HL//B3LYP/cc-pVTZ level of theory are in good agreement with the available experiment data over the measured temperature ranges, and the corresponding three-parameter expression is k(ICVT/SCT) = 3.13 x 10(-20) T(2.70) exp(-11.52/RT) cm3 mole(-1) s(-1) in the temperature range of 250-3000 K. Additionally, the flexibility of the dihedral angle of H2O2 is also discussed to explain the different experimental values.  相似文献   

17.
采用直接动力学的方法,对多通道反应体系Br+CH3S(O)CH3进行了理论研究.在BH&H-LYP/6-311G(2d,2p)水平下获得了优化几何构型、频率及最小能量路径(MEP),能量信息的进一步确认在MC-QCISD(单点)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应的两个可行的反应通道在200K~2000K温度范围内的速率常数.在整个反应区间内,生成HBr的反应通道与生成CHa的反应通道存在着竞争,前者是主反应通道,后者是次反应通道.变分效应和小曲率隧道效应对反应速率常数的计算影响都很小.理论计算得到的两个反应通道的反应速率常数与实验值符合得很好.  相似文献   

18.
Based on an FTIR-product study of the photolysis of mixtures containing Br2? CH3CHO and Br2? CH3CHO? HCHO in 700 torr of N2, the rate constant for the reaction Br + CH3CHO → HBr + CH3CO was determined to be 3.7 × 10?12 cm3 molecule?1 s?1. In addition, the selective photochemical generation of Br at λ > 400 nm in mixtures containing Br2? CH3CHO? 14NO2 (or 15NO2)? O2 was shown to serve as a quantitative preparation method for the corresponding nitrogen-isotope labeled CH3C(O)OONO2 (PAN). From the dark-decay rates of 15N-labeled PAN in large excess 14NO2, the rate constant for the unimolecular reaction CH3C(O)OO15NO2 → CH3C(O)OO + 15NO2 was measured to be 3.3 (±0.2) × 10?4 s?1 at 297 ± 0.5 K.  相似文献   

19.
This work investigates the unimolecular dissociation of the methoxycarbonyl, CH(3)OCO, radical. Photolysis of methyl chloroformate at 193 nm produces nascent CH(3)OCO radicals with a distribution of internal energies, determined by the velocities of the momentum-matched Cl atoms, that spans the theoretically predicted barriers to the CH(3)O + CO and CH(3) + CO(2) product channels. Both electronic ground- and excited-state radicals undergo competitive dissociation to both product channels. The experimental product branching to CH(3) + CO(2) from the ground-state radical, about 70%, is orders of magnitude larger than Rice-Ramsperger-Kassel-Marcus (RRKM)-predicted branching, suggesting that previously calculated barriers to the CH(3)OCO --> CH(3) + CO(2) reaction are dramatically in error. Our electronic structure calculations reveal that the cis conformer of the transition state leading to the CH(3) + CO(2) product channel has a much lower barrier than the trans transition state. RRKM calculations using this cis transition state give product branching in agreement with the experimental branching. The data also suggest that our experiments produce a low-lying excited state of the CH(3)OCO radical and give an upper limit to its adiabatic excitation energy of 55 kcal/mol.  相似文献   

20.
The geometries, harmonic vibrational frequencies, relative energetics, and enthalpies of formation of (CH(3)IO(3)) isomers and the reaction CH(3)O(2) + IO have been investigated using quantum mechanical methods. Optimization has been performed at the MP2 level of theory, using all electron and effective core potential, ECP, computational techniques. The relative energetics has been studied by single-point calculations at the CCSD(T) level. Methyl iodate, CH(3)OIO(2), is found to be the lowest-energy isomer showing particular stabilization. The two nascent association minima, CH(3)OOOI and CH(3)OOIO, show similar stabilities, and they are considerably higher located than CH(3)OIO(2). Interisomerization barriers have been determined, along with the transition states involved in various pathways of the reaction CH(3)O(2) + IO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号