首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inverse boundary design heat transfer problems, including only radiation, are considered. Variational methods of regularization are used for solving these (mathematically ill-posed) problems, they give possibility to take into account various a priori information about the desired solution. For minimizing the discrepancy functional we use the adjoint problem method; however, we use it not only in iterative regularization, but in Tikhonov and parametric ones as well. We use all the available a priori information about desired solutions in all the techniques; this allows to obtain physically feasible solutions in all the cases.  相似文献   

2.
In present paper, a modified factor of extinction coefficient and an equivalent albedo of scattering were defined taking into account anisotropic scattering in fibrous insulation. An inverse conduction-radiation analysis in an absorbing, emitting and scattering medium was conducted for the simultaneous estimation of the conductive and radiative properties using the experimentally measured temperature responses for external temperatures up to 980 K. The estimated properties were validated by comparing the predicted and measured results under transient and steady-state condition. It was found that the calculated results corresponded well with the experimental data within an average of 3.1% under transient condition and 9.8% under steady-state condition. This confirms the good behavior of the model and the validity of results.  相似文献   

3.
I.IntroductionThcinvcrsescattcringprob1cmisbasicinarcassuchasradar,sonar,geophysica1explora-honandnondestructivctesting.Whenthescatteringobjectisaconstitutiveparametersvaryinacontinuousmannerandtheinvcrseproblcmistodctcrmineoneormoreoftheseparametcrsfromtheobserveddata.Muchofthcpreviousworkonthisproblcmforthecaseofp1anewaveatnormalincidencchasconsistcdofderivingaSchr6dingerequationfromthebasicacousticandstrcss-straincquations,andthenreconstruchngthepotentialappearinginthisequationbyusingtheGe…  相似文献   

4.
A procedure is tested with which to determine the single-scattering albedo from polarization measurements of the angle-dependent intensity at two locations within, or on the boundaries of, a homogeneous finite or infinite atmosphere that scatters radiation according to the Rayleigh law with true absorption.  相似文献   

5.
In this paper, the method of fundamental solutions (MFS) is employed for determining an unknown portion of the boundary from the Cauchy data specified on parts of the boundary. We propose a new numerical method with adaptive placement of source points in the MFS to solve the inverse boundary determination problem. Since the MFS source points placement here is not trivial due to the unknown boundary, we employ an adaptive technique to choose a sub-optimal arrangement of source points on various fictitious boundaries. Afterwards, the standard Tikhonov regularization method is used to solve ill-conditional matrix equation, while the regularization parameter is chosen by the L-curve criterion. The numerical studies of both open and closed fictitious boundaries are considered. It is shown that the proposed method is effective and stable even for data with relatively high noise levels.  相似文献   

6.
The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors’ knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence.  相似文献   

7.
This note serves as an introduction to two papers by Klose et al. [2] and [3] and provides a brief review of the latest developments in optical tomography of scattering tissue. We discuss advancements made in solving the forward model for light propagation based on the radiative transfer equation, in reconstructing scattering and absorption cross sections of tissue, and in molecular imaging of luminescent sources.  相似文献   

8.
We formulate the adjoint radiative transfer for a pseudo-spherical atmosphere and various retrieval scenarios. The single scattering radiance is computed in a spherical atmosphere by using the source integration technique, while for the multiple scattering radiance we formulate an one-dimensional adjoint radiative transfer equation in a plane-parallel atmosphere. The adjoint solution of the radiative transfer equation is obtained by employing the discrete ordinate method with matrix exponential. We provide an abbreviated derivation of our formalism as well as a discussion of the numerical implementation of the theory.  相似文献   

9.
Both light and heat are produced during a chemical reaction in a combustion process, but traditionally all the energy released is taken as to be transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. Chemiluminescence is generated during a chemical reaction and independent of the temperature, and has been used widely for combustion diagnostics. It was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting-absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, it is required to conduct experimental measurements to determine the fraction of self-absorbed heat for different combustion processes.  相似文献   

10.
Three-dimensional steady-state radiative integral transfer equations (RITEs) for a cubic absorbing and isotropically scattering homogeneous medium are solved using the method of “subtraction of singularity”. Surface integrals and volume integrals are carried out analytically to eliminate singularities, to assure highly accurate solutions, and to reduce the computational time. The resulting system of linear equations for the incident energy is solved iteratively. Six benchmark problems for cold participating media subjected to various combinations of externally uniform/non-uniform diffuse radiation loads are considered. The solutions for the incident energy and the net heat flux components are given in tabular form for scattering albedos of ω=0, 0.5 and 1.  相似文献   

11.
This study presents validation of an inverse boundary condition design analysis used in the design of an axisymmetric vacuum chamber with characteristics of a semiconductor rapid thermal processing (RTP) furnace. The vacuum chamber with heater is a thermometry test bed and is equipped with thermocouples and an instrumented silicon wafer to map the temperature field in the system. In order to model the physical system accurately, precise characterization of the system is essential. In the absence of any medium, radiative heat transfer is the dominant heat transfer mode. The radiative properties of the system's important components are measured and a numerical sensitivity study is conducted to understand the effects of property and model-based uncertainty introduced to the solution. The required power input for the heaters is estimated directly using inverse design so that specified thermal conditions across the silicon wafer are achieved at steady state. Through application of the estimated power distribution in the system, the design is validated by comparing the design goal and measured temperature distribution along the silicon wafer accounting for the uncertainties of the solution.  相似文献   

12.
An inverse radiation analysis is presented for estimating the temperature and the heat load distributions of the heating surface from the temperature and the heat flux measurements of the heated object. The Monte Carlo method is employed to solve the direct radiation problem. The inverse radiation problem is solved using the conjugate gradient and singular value decomposition methods. The measured data are simulated by adding random errors to the exact solution of the direct problem. The effects of the measurement errors on the accuracy of the inverse analysis are investigated. The study shows that the heat load distribution of the heating surface can be estimated accurately for the exact and noisy data. And the conjugate gradient method is better than the singular value decomposition method since the former can obtain more accurate results if the measurement errors are the same.  相似文献   

13.
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.  相似文献   

14.
As an accurate and efficient algorithm, the discrete-ordinate method (DOM) has been used to solve the radiative transfer problem of plane-parallel scattering atmosphere illuminated by a parallel beam, an idealized case of the sun, from above the atmosphere. In this paper, we extend this algorithm so that radiative problems of more general sources, such as parallel surface sources that illuminate with a parallel beam in any direction from any vertical position, and general surface sources that illuminate continuously in a hemisphere, can be solved. For a problem where intensity distributions are sought for a number of different sources within the same atmosphere-surface system, the intrinsic properties of DOM are used so that the time required for the solution for extra sources is reduced to a substantially small amount. In the case of parallel surface sources, numerical testing has shown that the amount can be reduced to as little as 15% of a full solution. Examples of applications are presented.  相似文献   

15.
An approach to formulation of inversion algorithms for thermal sounding in the case of scattering atmosphere based on the adjoint equation of radiative transfer (Ustinov, JQSRT 68 (2001) 195, referred to as Paper 1 in the main text) is applied to temperature retrievals in the scattering atmosphere for the nadir viewing geometry. Analytical expressions for the weighting functions involving the integration of the source function are derived. Temperature weighting functions for a simple model of the atmosphere with scattering are evaluated and convergence to the case of pure atmospheric absorption is demonstrated. The numerical experiments on temperature retrievals are carried out to demonstrate the validity of the expressions obtained.  相似文献   

16.
The main goal of this paper is to give a rigorous derivation of the generalized form of the direct (also referenced as forward) and adjoint radiative transfer equations. The obtained expressions coincide with expressions derived by Ustinov [Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211]. However, in contrast to [Ustinov EA. Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211] we formulate the generalized form of the direct radiative transfer operator fully independent from its adjoint. To illustrate the application of the derived adjoint radiative transfer operator we consider the angular interpolation problem in the framework of the discrete ordinate method widely used to solve the radiative transfer equation. It is shown that under certain conditions the usage of the solution of the adjoint radiative transfer equation for the angular interpolation of the intensity can be computationally more efficient than the commonly used source function integration technique.  相似文献   

17.
This paper presents a robust and accurate way to solve steady-state linear transport (radiative transfer) equations numerically. Our main objective is to address the inverse transport problem, in which the optical parameters of a domain of interest are reconstructed from measurements performed at the domain’s boundary. This inverse problem has important applications in medical and geophysical imaging, and more generally in any field involving high frequency waves or particles propagating in scattering environments. Stable solutions of the inverse transport problem require that the singularities of the measurement operator, which maps the optical parameters to the available measurements, be captured with sufficient accuracy. This in turn requires that the free propagation of particles be calculated with care, which is a difficult problem on a Cartesian grid.  相似文献   

18.
A modified finite volume method with unstructured triangular meshes is proposed to solve the RTE in 2D complex geometries and for graded index media. In such media, the RTE has an additional term corresponding to “angular redistribution”. This term is due to the change in the orientation of the direction of propagation for the radiation along curved optical paths. Some benchmark cases applied to a slab (1D) and a square cavity (2D) with linear and nonlinear refractive graded index are used to validate the new method. New results are presented for a disk with radial graded index.  相似文献   

19.
Our purpose was a qualitative assessment of the impact of dust and water ice aerosols on the retrieved temperature profiles and the retrieval process itself in the Martian atmosphere. It aims to quantify the related uncertainties in the atmospheric temperature profiles derived from radiance measurements of the Planetary Fourier Spectrometer (PFS), currently operating on the Mars Express orbiter. In this study the effects of aerosol opacities on simulated data and retrieved temperature profiles were also investigated.From the analysis of the model atmosphere including dust and water ice with different size distributions it results that the dust component affects weighting functions and brightness temperatures less than water ice. A similar situation is also observed when different vertical distributions are considered. Unlike dust, water ice with different sizes of crystals evidently influences weighting functions and brightness temperatures. The impact of the considered water ice vertical distributions on brightness temperatures is noticeable only near 840 cm−1.Considering different dust opacities, the largest differences—5 K maximum—between retrieved temperature profiles were observed close to the surface, regardless assumptions on a size distribution or the refractive indices. Contrary to dust, the different sizes of water ice particles assumed during retrieval stronger affected the retrieved temperature profiles than water ice opacities. Moreover, the differences in the retrieved temperature profiles were amplified while wrong optical properties for dust as well as for water ice aerosol were assumed instead of the nominal case. This means that the wrong assumption can induce an additional source of the retrieval error and lead to unreasonable temperature profiles. In the cases of expected heavily loads water ice crystals, their size distribution in the Martian atmosphere should be known from other observations before the retrieval of the temperature profile is attempted.For the analyzed examples of real PFS measurements the impact of different dust vertical distributions on the retrieval of temperature profile is prominent only in layers close to the surface. However, these differences remain comparable with retrieval errors. All influences of dust on weighting functions, brightness temperatures and during retrieval can be neglected if the noise equivalent radiance (NER) of PFS is taken into account.  相似文献   

20.
Optimal shape design problems of steady-state radiative heat transfer are considered. The optimal shape design problem (in the three-dimensional space) is formulated as an inverse one, i.e., in the form of an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem via a least-squares objective functional. The minimization problem has to be solved numerically. Gradient minimization methods need the gradient of a functional to be minimized. In this paper the shape gradient of the least-squares objective functional is derived with the help of the shape sensitivity analysis and adjoint problem method. In practice a surface to be optimized may be (or, most likely, is to be) given in a parametric form by a finite number of parameters. In this case the objective functional is, in fact, a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. The gradient of the objective functional, in the case that the surface to be optimized is given in a finite-parametric form, is derived from the shape gradient. A particular case, that a surface to be optimized is a “two-dimensional” polyhedral one, is considered. The technique, developed in the paper, is applied to a synthetic problem of designing a “two-dimensional” radiant enclosure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号