首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, studies on various physical properties, viz., dielectric properties (dielectric constant, loss tan δ, a.c. conductivity σ) over a wide range of frequency and temperature, optical absorption, ESR at liquid nitrogen temperature and magnetic susceptibility at room temperature of Li2O-CaF2-P2O5: Cr2O3 glass ceramics, have been reported. The optical absorption, ESR and magnetic susceptibility studies indicate that the chromium ions exist in Cr5+, Cr4+ and Cr6+ states in addition to Cr3+ state in these samples. The dielectric constant and loss variation with the concentration of Cr2O3 have been explained on the basis of space charge polarization mechanism. The dielectric relaxation effects exhibited by these samples have been analysed by a graphical method and the spreading of dielectric relaxation has been established. The a.c. conductivity in the high-temperature region seems to be connected both with electronic and ionic movements.  相似文献   

2.
Li2O–MoO3–B2O3 glasses mixed with different concentrations of CuO (ranging from 0 to 1.2 mol%) were prepared. The samples were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimetry. Optical absorption, luminescence, ESR, IR and dielectric properties (viz., dielectric constant ?′, loss tan δ and a.c. conductivity σac, over a wide range of frequency and temperature) of these glass materials have been investigated. The results of differential scanning calorimetric studies suggest that the glass forming ability is higher for the glasses containing CuO beyond 0.6 mol%. The analysis of results of the dielectric properties has revealed that the glasses possess high insulating strength when the concentration of CuO is >0.6 mol%. The variation of a.c. conductivity with the concentration of CuO passes through a maximum at 0.6 mol%. In the high-temperature region, the a.c. conduction seems to be connected with the mixed conduction viz., electronic conduction and ionic conduction. The optical absorption spectra of these glasses exhibited bands due to Cu+ ions in the UV region in addition to the conventional band due to Cu2+ ions in the visible region. The ESR spectral studies have indicated that there is a gradual adoption of Cu2+ ions from ionic environment to covalent environment as the concentration of CuO increases beyond 0.6 mol% in the glass matrix. The luminescence spectra excited at 271 nm have exhibited an intense yellow emission band centered at about 550 nm and a relatively broad blue emission band at about 450 nm; these bands have been attributed to the 3D1  1S0 transition of isolated Cu+ ions and 3D1  1S0 transition of (Cu+)2 pairs, respectively. The quantitative analysis of the results of all these studies has indicated that as the concentration of CuO is increased beyond 0.6 mol% in the glass matrix, a part of Cu2+ ions have been reduced to Cu+ ions that have influenced the physical properties of these glasses to a substantial extent.  相似文献   

3.
The dissociation state of the solutes M2MoO4, M2Mo3O10, M2Mo4O13, M2Mo5O16 (MRb or Cs), Na2CrO4·MoO3, K2CrO4·2 MoO3, Cr2Mo3O12 and V2MoO8 was studied cryoscopically in molten K2 Cr2O7 and KNO3 solvents. The freezing point depression, ΔT, of the solvents was obtained by measuring the cooling curves of the binary salt mixtures over unlimited range of solute concentration. The number of foreign ions obtained ν, showed that the solutes were either simply dissociated in the melt into the probable stable species (MoO4)2?, (Mo3O10)2?, (Mo4O13)2? and (Mo5O16)2? or, in some cases after reactions and rearrangements, into (CrMo2O10)2? heteropolyions. The solute V2MoO8, on the other hand, was found to dissolve without any apparent dissociation. An agreement between the experimental and calculated values of activity, a, based on the Temkin and Random Mixing models and that of Van't Hoff's equation support the proposed simple dissocia- tion scheme for K2Cr2O7Cs2MoO4 system.  相似文献   

4.
Five chemical compounds, CuMoO4, Cu3Mo2O9, Cu2Mo3O10, Cu6Mo4O15, and Cu4?x Mo3O12 (0.10 ? x ? 0.40), were identified in the system Cu2OCuOMoO3 and characterized by DTA, X-ray powder patterns, ir spectra, and magnetic properties. Cupric molybdates CuMoO4 and Cu3Mo2O9 are stable in air up to 820 and 855°C, respectively, melting at these temperatures with simultaneous decomposition (oxygen loss). Congruent mp of cuprous molybdates Cu2Mo3O10 and Cu6Mo4O15, in argon, are 532 and 466°C, respectively. Nonstoichiometric phase Cu4?x Mo3O12 = Cu2+3Cu01?xMo6+3O12, melts in argon between 630 and 650°C depending on the value of x and at 525–530°C undergoes polymorphic transformation. Areas of coexistence of the above-mentioned phases are determined. The μeff of Cu2+ ions and θ values are: 1.80 B.M. and 28°K for CuMoO4, 1.71 B.M. and ? 12°K for Cu3Mo2O9, and 1.74 B.M. and ? 93°K for Cu4?xMo3O12. Below 200°K CuMoO4 becomes antiferromagnetic. Cu2Mo3O10 and Cu6Mo4O15 show weak temperature-independent paramagnetism.  相似文献   

5.
The glass transition temperature (Tg), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi2O3-zB2O3 glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (αO2−) and optical basicity (Λ) of the glasses estimated using Lorentz-Lorenz equation increase with increasing ZnO or Bi2O3 content, giving the values of αO2−=1.963 Å3 and Λ=0.819 for 60ZnO-10Bi2O3-30B2O3 glass. The formation of BOBi and BOZn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (BMO) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strengths of 150.6 kJ/mol for ZnO bonds in ZnO4 groups, 102.5 kJ/mol for BiO bonds in BiO6 groups, 498 kJ/mol for BO bonds in BO3 groups, and 373 kJ/mol for BO bonds in BO4 groups. Good correlations are observed between Tg and BMO, Λ and BMO, and Tg and Λ, proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnOBi2O3B2O3 glasses.  相似文献   

6.
The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr6O11 and MoO2 in air. In the literature, an oxide with a composition Pr2MoO6 has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm4Mo3O16 (space group Pn-3n, Z=8), with a=11.0897(1) Å. The structure contains MoO4 tetrahedral units, with Mo-O distances of 1.788(2) Å, fully long-range ordered with PrO8 polyhedra; in fact it can be considered as a superstructure of fluorite (M8O16), containing 32 MO2 fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (af=5.5 Å) as a≈2af. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr3+-Pr4+ oxidation state. The similarity of the XRD pattern with that published for Ce2MoO6 suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce5Mo3O16.  相似文献   

7.
The glasses within composition as: (80 − x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25–35 nm and 30–46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ε′, activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh, β, decrease from 51.63 to 0.31 × 106 (s−1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.  相似文献   

8.
In this work, the possible synergy effects between Bi2O3, MoO3 and V2O5, and between Bi2Mo3O12 and BiVO4, were investigated. The catalytic activity of the ??mechanical mixture?? of these compounds was measured. The mixture containing 36.96?mol% Bi2O3, 39.13?mol% MoO3 and 23.91?mol% V2O5 (21.43?mol% Bi2Mo3O12 and 78.57?mol% BiVO4), corresponding to the compound Bi1?x/3V1?x Mo x O4 with x?=?0.45 (Bi0.85V0.55Mo0.45O4), exhibited the highest activity for the selective oxidation of propylene to acrolein. The mixed sample prepared chemically by a sol?Cgel method possessed higher activity than that of mechanical mixtures.  相似文献   

9.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

10.
On the basis of the higher order perturbation formulas of g factors for a 4d1 group in tetragonally compressed octahedra, the g factors, optical absorption, local structure, and their concentration dependences of pentavalent molybdenum in 40PbO–(10 − x)Y2O3–50P2O5:xMoO3 (1 ≤ x ≤ 5 mol%) glass are uniformly investigated. The experimental optical absorption spectra and g factors for Mo5+ at various concentrations x are reasonably regenerated by using the reasonable exponential concentration functions of the cubic field parameter Dq, covalent factor N, and relative tetragonal compression ratio ρ. The tetragonal compression ratio ρ due to the Jahn–Teller effect was found in the range of 3.8% to 4.2%. The decreasing trend of Dq and N and the increasing trend of ρ with concentration can be interpreted as the fact that the variations of MoO3 and Y2O3 concentrations lead to the modulations of local structure and electron cloud distribution around Mo5+, associated with the adjustment of the glass network. The concentration dependence of optical basicity is also analyzed for the above glass systems.  相似文献   

11.
A new phosphate of molybdenum (V) K4Mov8P12O52 has been isolated and its structure solved from a single crystal X-ray diffraction study. It crystallizes in a monoclinic cell, space groupC2–c, with the parametersa = 10.7433(16)Å,b = 14.0839(9)Å,c = 8.8519(7)Å, and β = 126.42(1)°. After refinement of the different parameters, the reliability factors were lowered toR = 0.026 andw = 0.029. The framework “Mo8P12O52” can be described as corner-sharing PO4 tetrahedra,P2O7groups, and MoO6 octahedra. Although the “O6” octahedron surrounding the molybdenum ion is almost regular, the metal ion is strongly off center so that its coordination is better described as a MoO5 pyramid. This particular coordination, which characterizes Mo(V), is discussed.  相似文献   

12.
The experimental FTIR spectra and DSC curves of the ternary 40TeO2–(60?x)V2O5–xNiO glasses with 0 ≤ x ≤ 30 (in mol%) have been investigated. The glass transition properties that have been measured and reported in this paper, include the glass transition temperature (T g), glass transition width (ΔT g), heat capacity change at glass transition (ΔC P) and Fragility (F). Thermal stability, fragility, and glass-forming tendency of these glasses have been estimated. Also, Poisson’s ratio (μ) and IR spectra of the presented systems have been investigated, to determine relationship between chemical composition and the thermal stability or to interpret the structure of glass. In addition, Makishima and Makenzie’s theory was applied for determination of Young’s modulus, bulk modulus, and shear modulus, indicating a strong relation between elastic properties and structure of glass. In general, results of this work show that glasses with x = 0 and 30 have the highest shear and young’s modulus which make them as suitable candidate for the manufacture of strong glass fibers in technological applications; but it should be mentioned that glass with x = 30 has higher handling temperature and super resistance against thermal shock.  相似文献   

13.
Some K2O-TiO2-GeO2 glasses with a large amount of TiO2 contents (15-25 mol%) such as 25K2O-25TiO2-50GeO2 have been prepared, and their electronic polarizability, Raman scattering spectra, and crystallization behavior are examined to clarify thermal properties and structure of the glasses and to develop new nonlinear optical crystallized glasses. It is proposed that the glasses consist of the network of TiO6 and GeO4 polyhedra. The glasses show large optical basicities of Λ=0.88-0.92, indicating the high polarizabity of TiOn (n=4-6) polyhedra in the glasses. K2TiGe3O9 crystals are formed through crystallization in all glasses prepared in the present study. In particular, 20K2O-20TiO2-60GeO2 glass shows bulk crystallization and 18K2O-18TiO2-64GeO2 glass exhibits surface crystallization giving the c-axis orientation. The crystallized glasses show second harmonic generations (SHGs), and it is suggested that the distortion of TiO6 octahedra in K2TiGe3O9 crystals induces SHGs.  相似文献   

14.
采用高温熔融法制备Eu3+?Tb3+共掺杂SiO2?B2O3?Na2O?Y2O3?P2O5前驱体玻璃。对前驱体玻璃粉末进行差示扫描量热(DSC)分析,确定玻璃陶瓷样品的热处理温度。前驱体玻璃热处理后,采用X射线衍射(XRD)和扫描电镜(SEM)分析可知前驱体玻璃中有Na3.6Y1.8(PO4)3晶粒析出。利用荧光光谱对玻璃陶瓷样品的发光性能进行表征,同时分析了Tb3+离子的荧光衰减曲线,确定Eu3+、Tb3+离子的发光机理以及能量传递过程。通过对Eu3+?Tb3+共掺杂玻璃陶瓷样品的发射光谱采集并用色坐标软件和色温计算程序,获得玻璃陶瓷样品的色坐标和相关色温。  相似文献   

15.
Substituted phases with the composition La5Mo4−xTxO16−δ (T=Co, Fe, Mn, and Mg and x∼0.7) were prepared by fused-salt electrolysis and/or conventional solid-state methods. The crystal structure of the parent compound, La5Mo4O16, contains perovskite-like corner-sharing MoO6 octahedral units in the ab plane separated by Mo2O10 bioctahedral units along the c direction. Detailed single-crystal X-ray diffraction studies on the Co-substituted phase, La5Mo3.31Co0.69O16−δ, indicated that the unit cell is triclinic (space group C-1) with Co exclusively replacing Mo atoms in the perovskite layers. X-ray absorption measurements revealed that the transition metal ions are divalent, consistent with the crystal structure analysis. The anomalous magnetic transition observed at 180 K in the parent compound shifts to lower temperatures upon substitution with transition metal ions. No long-range magnetic order was evident in the Mg2+-substituted compositions. The electrical resistivity of all the substituted phases was at least 3 orders of magnitude higher than that of the parent compound. Variations in the magnetic and electrical properties have been ascribed to the disruption of exchange correlations caused by substitutional disorder at the Mo sites.  相似文献   

16.
Reduction of MoO2Cl2(DMF)2 (DMF = dimethylformamide) with PPh3 in mild conditions afforded the dinuclear species Mo2O3Cl4(DMF)4. Related compounds could be prepared by substitution of DMF with stronger bases. While attempting to grow crystals of these compounds new complexes with the syn-[Mo2O4]2+ core were obtained. The molecular structures of Mo2O4Cl2(DMF)4, and Mo2O4Cl2(bipy)2 (bipy = 2,2′-bipyridine) have been established by X-ray diffraction analysis.  相似文献   

17.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

18.
Two series of glasses have been prepared and characterized. One with varying Li2O/P2O5 ratio and the other with varying Mo/P ratio. The relationship between the formation of the reduced state of molybdenum in phosphate glasses and the type of gases released in heating batch materials has been investigated. Effect of temperature on the valence state of molybdenum is also studied. Oxidation-reduction (redox) equilibrium of Mo5+/Mo6+ and environment of molybdenum (V) in these series of lithium-molybdenum-phosphate glasses are related to the glass composition and the possible structural units formation in the glasses.  相似文献   

19.
Some of the properties of glasses obtained in the systems TeO2–MoO3 and TeO2–MoO3–V2O5 had been studied. A good correlation between the properties and the phase diagram of the TeO2–MoO3 system was established. The glass resistance-composition function varied between 6.85 · 109 ohm · cm and 2.93 · 1010 ohm · cm. The isolines of the properties (softening temperature, density, resistance at room and higher temperatures and activation energy) of the glasses obtained from the TeO2–MoO3–V2O5 system were ploted. The electrical resistance is influenced by the concentration of V2O5 and MoO3 and by temperature. The glass absorption characteristics of thin layers were determined in the visible range.  相似文献   

20.
Although R2O3:MoO3=1:6 (R=rare earth) compounds are known in the R2O3-MoO3 phase diagrams since a long time, no structural characterization has been achieved because a conventional solid-state reaction yields powder samples. We obtained single crystals of R2Mo6O21·H2O (R=Pr, Nd, Sm, and Eu) by thermal decomposition of [R2(H2O)12Mo8O27nH2O at around 685-715 °C for 2 h, and determined their crystal structures. The simulated XRD patterns of R2Mo6O21·H2O were consistent with those of previously reported R2O3:MoO3=1:6 compounds. All R2Mo6O21·H2O compounds crystallize isostructurally in tetragonal, P4/ncc (No. 130), a=8.9962(5), 8.9689(6), 8.9207(4), and 8.875(2) Å; c=26.521(2), 26.519(2), 26.304(2), and 26.15(1) Å; Z=4; R1=0.026, 0.024, 0.024, and 0.021, for R=Pr, Nd, Sm, and Eu, respectively. The crystal structure of R2Mo6O21·H2O consists of two [Mo2O7]2−-containing layers (A and B layers) and two interstitial R(1)3+ and R(2)3+ cations. Each [Mo2O7]2− group is composed of two corner-sharing [MoO4] tetrahedra. The [Mo2O7]2− in the B layer exhibits a disorder to form a pseudo-[Mo4O9] group, in which four Mo and four O sites are half occupied. R(1)3+ achieves 8-fold coordination by O2− to form a [R(1)O8] square antiprism, while R(2)3+ achieves 9-fold coordination by O2− and H2O to form a [R(2)(H2O)O8] monocapped square antiprism. The disorder of the [Mo2O7]2− group in the B layer induces a large displacement of the O atoms in another [Mo2O7]2− group (in the A layer) and in the [R(1)O8] and [R(2)(H2O)O8] polyhedra. A remarkable broadening of the photoluminescence spectrum of Eu2Mo6O21·H2O supported the large displacement of O ligands coordinating Eu(1) and Eu(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号