首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Three series of vacancy-free quaternary clathrates of type I, Ba8ZnxGe46−xySiy, Ba8(Zn,Cu)xGe46−x, and Ba8(Zn,Pd)xGe46−x, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 °C. In all cases cubic primitive symmetry (space group Pm3?n, a∼1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba8ZnxGe46−xySiy. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed for the 6d site. Site preference of Ge and Si in Ba8ZnxGe46−xySiy has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the “Ba8Ge46” corner at 800 °C has been derived and a three-dimensional isothermal section at 800 °C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba8{Cu,Pd,Zn}xGe46−x and Ba8ZnxSiyGe46−xy evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba8Ge43. A promising figure of merit, ZT ∼0.45 at 750 K, has been derived for Ba8Zn7.4Ge19.8Si18.8, where pricey germanium is exchanged by reasonably cheap silicon.  相似文献   

2.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

3.
A new ternary, intermetallic compound, Ba14Zn5−xAl22+x, was synthesized by heating the pure elements at 900°C. This compound crystallizes in the monoclinic space group I2/m, Z=2, with a=10.474(2) Å, b=6.0834(14) Å, c=34.697(8) Å and β=90.814(4)°. The crystal structure of Ba14Zn5−xAl22+x consists of [Zn5−xAl22+x] slabs that are built with a novel, two-dimensional (2D) network of Zn and Al atoms involving eight-membered rings sandwiched between two layers of trigonal bipyramids interconnected by three-center bonding. Tight-binding, linear muffin-tin orbital (TB-LMTO-ASA) calculations have been performed to understand the relationship between composition and orbital interactions in the electronegative element framework. This new structure is closely related to the high-pressure, cubic Laves-type structure of BaAl2 as well as the ambient pressure binary compound, Ba7Al13. The degree of valence electron charge transfer from the electropositive Ba atoms is related to the Al:Ba molar ratio in the Ba-Zn-Al system.  相似文献   

4.
The new compound U3Co4+xAl12−x, where x=0.55(2), was prepared by arc-melting of the elemental components, followed by a prolonged annealing at elevated temperature. Scanning electron microscopy-energy-dispersive spectroscopy and powder X-ray diffraction were used to determine the deviation from the ideal stoichiometry. A small homogeneity range, that extends around the composition U3Co4+xAl12−x with 0.4(1) ?x?0.7(1), could be detected. Single-crystal diffraction experiments revealed that U3Co4.55Al11.45 crystallizes with the Gd3Ru4Al12 type-structure, (space group P63/mmc, Z=2) in a cell of dimensions at room temperature, a=8.6518(2) Å, c=9.2620(2) Å. The crystal structure can be viewed as an intergrowth of two distinct layers of Co and Al atoms, and U, Al and mixed Al/Co atoms that pile up along the hexagonal axis. The results of the DC magnetization suggest the occurrence of a spin glass state at low temperature (Tf=8 K). The origin of freezing of the magnetic moments may arise from a topological frustration due to the location of the U atoms on the apexes of a distorted Kagomé lattice.  相似文献   

5.
The series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30 have been synthesized at 1400°C in air. They exhibit efficient excitation at about 400 nm and typical emission of Eu3+ at about 580-620 nm, form solid solutions within 0.0?x?2.0 and 0?y?4 respectively, and crystallized in P4/mbm at room temperature with Eu atoms occupied at centrosymmetric site (0, 0, 0). Their conductivity is very low (2.8×10−6 Ω−1 cm−1 at 740°C for Ba6Ti2Ta8O30).  相似文献   

6.
A novel ternary boron-rich scandium borocarbide Sc4.5−xB57−y+zC3.5−z (x=0.27, y=1.1, z=0.2) was found. Single crystals were obtained by the floating zone method by adding a small amount of Si. Single-crystal structure analysis revealed that the compound has an orthorhombic structure with lattice constants of a=1.73040(6), b=1.60738(6) and c=1.44829(6) nm and space group Pbam (No. 55). The crystal composition ScB13.3C0.78Si0.008 calculated from the structure analysis agreed with the measured composition of ScB12.9C0.72Si0.004. The orthorhombic crystal structure is a new structure type of boron-rich borides and there are six structurally independent B12 icosahedra I1—I6, one B8/B9 polyhedron and nine bridging sites all which interconnect each other to form a three-dimensional boron framework. The main structural feature of the boron framework structure can be understood as a layer structure where two kinds of boron icosahedron network layer L1 and L2 stack each other along the c-axis. There are seven structurally independent Sc sites in the open spaces between the boron icosahedron network layers.  相似文献   

7.
Two novel ternary intermediate phases, namely URuSi3−x (x=0.11) and U3Ru2Si7 were found in the Si-rich part of the U-Ru-Si phase diagram. Single crystal X-ray diffraction measurements, carried out at room temperature, indicated that URuSi3−x crystallizes in its own tetragonal type structure (space group P4/nmm, no. 129; unit cell parameters: a=12.108(1) Å and c=9.810(1) Å), being a derivative of the BaNiSn3-type structure. U3Ru2Si7 adopts in turn a disordered orthorhombic La3Co2Sn7-type structure (space group Cmmm, no. 65; unit cell parameters: a=4.063(1) Å, b=24.972(2) Å and c=4.072(1) Å). As revealed by magnetization, electrical resistivity and specific heat measurements, both compounds order magnetically at low temperatures. Namely URuSi3−x is a ferromagnet with TC=45 K, and U3Ru2Si7 shows ferrimagnetic behavior below TC=29 K.  相似文献   

8.
(La1−xPbx)1−yyMnO3 with x=0.05-0.5 and y=0, 0.05, 0.1 (where □ is a vacancy) was studied to evaluate the effects of A-site vacancies on the physical properties. In this system manganese perovskites form with tolerance factors close to 1 and low A-site cation size mismatch due to similarities in the effective ionic radii of La3+ and Pb2+. Increasing vacancy concentration indicates no significant effect on the lattice parameters or volume. However, the vacancies introduce a greater A-site cation size mismatch, which leads to a lowering of the ferromagnetic and metal-insulator transition temperatures, although the transitions are not broadened with increasing vacancy content. Due to the vacancies a distribution of Mn-O-Mn angles and Mn-O distances are created, and long range order in (La1−xPbx)1−yyMnO3 appears to be determined by Mn-O-Mn angles and Mn-O distances which most distort from 180° and are the longest, respectively, in the structure.  相似文献   

9.
The intermetallic compound Co7+xZn3−xSn8 (−0.2<x<0.2) forms from the reaction of cobalt in zinc/tin eutectic flux. This phase has a new structure type in orthorhombic space group Cmcm, with unit cell parameters a=4.138(1) Å, b=12.593(4) Å, and c=11.639(4) Å (Z=2; R1=0.0301). Varying the amount of cobalt in the synthesis leads to formation of a superstructure in space group Pnma, with lattice parameters a=12.5908(2) Å, b=11.6298(3) Å, and c=8.2704(2) Å (Z=4; R1=0.0347). A Co/Zn mixed site and a partially occupied Co site in the Cmcm structure order to form the Pnma supercell. TGA/DSC studies indicate that the binary phase CoSn initially forms in the flux at 1173 K, and then reacts with the zinc in the cooling solution to form the ternary structure at 823 K. This phase exhibits Pauli paramagnetic behavior.  相似文献   

10.
Polycrystalline samples with general formula Yb2−xCrxO3 (0<x<0.03), obtained by sol-gel method and analyzed by X-ray diffraction, formed solid solutions over all the mentioned range. Cr showed a maximum solubility of 2.8 mol% in Yb2O3 sesquioxide at 1000 °C. A preferential substitution of Cr3+ ions over two cationic sites, 8b and 24d in the space group Ia-3 was found. The lattice parameters a are found to vary linearly (10.4402(4) Å <a<10.4372(1) Å) with the composition x. The two independent atoms Yb/Cr have octahedral coordination; however, the degrees of distortion of their coordination polyhedron are different. Replacing Yb3+ by Cr3+ introduces slight changes in the atomic coordinates leading to an increase of the mean cation-anion distances. The ability of Raman spectroscopy to detect changes in local coordination is utilized. A pseudo-tetrahedral coordination for the Cr3+ in the 24d site was found. Magnetic susceptibility measurements of all samples were done in a temperature range of 2-50 K. For T<37 K, the inverse paramagnetic susceptibilities depend linearly on temperature. However, in the high-temperature region, for T>37 K, the inverse paramagnetic susceptibilities are non-linear versus temperature. This deviation from the Curie-Weiss behaviour was discussed.  相似文献   

11.
The magnetic structures of RSn1+xGe1−x (R=Tb, Dy, Ho and Er, x≈0.1) compounds have been determined by neutron diffraction studies on polycrystalline samples. The data recorded in a paramagnetic state confirmed the orthorhombic crystal structure described by the space group Cmcm. These compounds are antiferromagnets at low temperatures. The magnetic ordering in TbSn1.12Ge0.88 is sine-modulated described by the propagation vector k=(0.4257(2), 0, 0.5880(3)). Tb magnetic moment equals 9.0(1) μB at 1.62 K. It lies in the b-c plane and form an angle θ=17.4(2)° with the c-axis. This structure is stable up to the Nèel temperature equal to 31 K. The magnetic structures of RSn1+xGe1−x, where R are Dy, Ho and Er at low temperatures are described by the propagation vector k=(1/2, 1/2, 0) with the sequence (++−+) of magnetic moments in the crystal unit cell. In DySn1.09Ge0.91 and HoSn1.1Ge0.9 magnetic moments equal 7.25(15) and 8.60(6) μB at 1.55 K, respectively. The moments are parallel to the c-axis. For Ho-compound this ordering is stable up to TN=10.7 K. For ErSn1.08Ge0.92, the Er magnetic moment equals 7.76(7) μB at T=1.5 K and it is parallel to the b-axis. At Tt=3.5 K it tunes into the modulated structure described by the k=(0.496(1), 0.446(4), 0). With the increase of temperature there is a slow decrease of kx component and a quick decrease of ky component. The Er magnetic moment is parallel to the b-axis up to 3.9 K while at 4 K and above it lies in the b-c plane and form an angle 48(3)° with the c-axis. In compounds with R=Tb, Ho and Er the magnetostriction effect at the Nèel temperature is observed.  相似文献   

12.
Synthesis of new perovskite Sr1−xyCaxBayMnO3−δ compounds is described in detail and dependence of their phase stability and structural distortions on the tolerance factor is discussed. Oxygen contents have been measured over extended temperature and composition ranges. Neutron powder diffraction was used to precisely measure the A-O and Mn-O bond lengths and derive accurate interatomic distances [Ca-O], [Sr-O], [Ba-O], and [Mn-O]. By using these parameters instead of tabulated ionic radii we have derived the functional dependence of the tolerance factor t=t(x,y,T,δ) on composition, temperature, and oxygen content. At a fixed oxygen content, the tolerance factor is an increasing function of temperature as a result of greater thermal expansion of the average 〈A-O〉 bond relative to the 〈Mn-O〉 bond. We find that the stability of the perovskite phase at high temperature is governed, as expected, by the magnitude of tolerance factor (t?1) which can be adjusted by controlling the oxygen content 3−δ. This dependence of the tolerance factor on oxygen content and temperature can be utilized to design synthesis conditions for the controlled formation of the new, kinetically stable, perovskite phases.  相似文献   

13.
14.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

15.
16.
The new compounds U3Co12−xX4 with X=Si, Ge were prepared by direct solidification of the corresponding liquid phase, followed by subsequent annealing at 1173 K. Single crystal X-ray diffraction carried out at room temperature showed that they crystallize with the hexagonal space group P63/mmc (no.194) and the unit-cell parameters a=8.130(5), c=8.537(5) Å and a=8.256(1), c=8.608(1) Å for the silicide and germanide, respectively. Their crystal structure derives from the EuMg5.2 structure type, and is closely related to the Sc3Ni11Si4 and Gd3Ru4−xAl12+x types. For the present compounds, no substitution mechanisms have been observed, the partial occupancy of one Co site results from the presence of vacancies, only. The homogeneity ranges, evaluated by energy dispersive spectroscopy analysis, extend from x=0.0(2) to 0.3(2) and from x=0.0(2) to 1.0(2) for U3Co12−xSi4 and U3Co12−xGe4, respectively. The electronic properties of both compounds were investigated by means of DC magnetic susceptibility and DC electrical resistivity measurements. The U3Co12−xX4 compounds are both Pauli paramagnets with their electrical resistivity best described as poor metallic or dirty metallic behavior.  相似文献   

17.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

18.
The structures of Li1+xyNb1−x−3yTix+4yO3 solid solutions within the so-called M-phase field in the Li2O-Nb2O5-TiO2 system were investigated using high-resolution transmission electron, microscope (HRTEM) and single-crystal X-ray diffraction. The results demonstrated that the phase field is not a solid solution but rather a homologous series of commensurate intergrowth structures with LiNbO3-type (LN) slabs separated by single [Ti2O3]2+ corundum-type layers. The thickness of the LN slab decreases with increasing Ti-content from ∼55 to 3 atomic layers in the metastable H-Li2Ti3O7 end-member. The LN slabs accommodate a wide range of Ti4+/Nb5+ substitution, and for a given homolog the distribution of Ti and Nb is not uniform across the slab. A single-crystal X-ray diffraction study of a structure composed of nine-layer LN slabs revealed preferential segregation of Ti to the slab surfaces which apparently provides partial compensation for the charge on the adjacent [Ti2O3]2+ corundum layers. The extra cations in phases with x>0 are accommodated through the formation of Li-rich Li2MO3-type layers in the middle of the LN slabs. The fraction of layers with extra cations increases with increasing Ti-content in the structure.  相似文献   

19.
The structure of pseudorhombohedral-type InFe1−xTixO3−x/2 (x=2/3) was refined by Rietveld profile fitting. The crystal is a commensurate member of a series in a solution range on InFeO3-In2Ti2O7 including incommensurate structures. The structure with the unit cell of a=5.9188(1), b=10.1112(2), and c=6.3896(1) Å, β=108.018(2)°, and a space group P21/a is the alternate stacking of an edge-shared InO6 octahedral layer and an Fe/Ti-O plane along c*. Metal sites on the Fe/Ti-O plane are surrounded by four oxygen atoms on the Fe/Ti-O plane and two axial ones. Electric conductivities of the order 10−4 S/cm were observed for the samples at 1000 K, while the oxide ion transport number is almost zero as no electromotive force was detected by an oxygen concentration cell.  相似文献   

20.
The complex conductivity spectra of mixed alkali borate glasses of compositions y [xLi2O·(1−x)Na2O]·(1−y)B2O3 (with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0.1, 0.2, 0.3) in a frequency range between 10−2 Hz and 3 MHz and at temperatures ranging from 298 to 573 K have been studied. For each glass composition the conductivities show a transition from the dc values into a dispersive regime where the conductivity is found to increase continuously with frequency, tending towards a linear frequency dependence at sufficiently low temperatures. Mixed alkali effects (MAEs) in the dc conductivity and activation energy are identified and discussed. It has been for the first time found that the strength of the MAE in the logarithm of the dc conductivity linearly increases with the total alkali oxide content, y, and the reciprocal temperature, 1/T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号