首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The presence of ε-MnO2 as a major component of electrolytic manganese dioxide (EMD) has been demonstrated by a combined X-ray diffraction/transmission electron microscopy (TEM) study. ε-MnO2 usually has a partially ordered defect NiAs structure containing 50% cation vacancies; these vacancies can be fully ordered by a low temperature (200 °C) heat treatment to form a pseudohexagonal but monoclinic superlattice.Numerous fine-scale anti-phase domain boundaries are present in ordered ε-MnO2 and cause extensive peak broadening and a massive shift of a very intense, 0.37 nm superlattice peak. This suggests a radically different explanation of the ubiquitous, very broad ∼0.42 nm peak (∼21-22° 2θ, CuKα radiation) in EMDs, which heretofore has been attributed to Ramsdellite containing numerous planar defects. This work confirms the multi-phase model of equiaxed EMDs proposed by Heuer et al. [ITE Lett. 1(6) (2000) B50; Proc. Seventh Int. Symp. Adv. Phys. Fields 92 (2001)], rather than the defective single-phase model of Chabre and Pannetier [Prog. Solid State Chem. 23 (1995) 1] and Bowden et al. [ITE Lett. 4(1) (2003) B1].  相似文献   

2.
3.
Polycrystalline samples of (1−x) CeO2x/2 Bi2O3 phases, where x is the atom fraction of bismuth have been synthesized by the precipitation process and after the thermal treatment at 600 °C, under air. Samples are first characterized by the X-ray diffraction and scanning electron microscopy. To determine the samples specific surface areas, Brunauer-Emmett-Teller (BET) analyses have been performed. In the composition range 0≤x≤0.20, a cubic solid solution with fluorite structure is obtained. For compositions x comprised between 0.30 and 0.90, two types of T′ (or β′) and T (or β) tetragonal phases, similar to the well-known β′ or β Bi2O3 metastable structural varieties, are observed. However, the crystal cell volumes of these β′ or β Bi2O3 phases increase with the composition x in bismuth: this might be due to the presence of defects or substitution by cerium atoms, in the tetragonal lattices. Using X-ray diffraction profile analyses, correlations between bismuth composition x and crystal sizes or lattice distortions have been established. The solid-gas interactions between these polycrystalline materials and air-CH4 and air-CO flows have been studied as a function of temperature and composition x, using Fourier transform infrared (FTIR) analyses of the conversions of CH4 and CO gases into the CO2 gas. The transformations of CH4 and CO molecules as a function of time and temperature are determined through the intensities of FTIR CO2 absorption bands. Using the specific surface areas determined from BET analyses, these FTIR intensities have been normalized and compared. For all bismuth compositions, a low catalytic reactivity is observed with air-CH4 gas flows, while, for the highest bismuth compositions, a high catalytic reactivity is observed with air-CO gas flows.  相似文献   

4.
不同温度下合成的LiCoO2的晶体结构   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了用Li2CO3和Co3O4固相合成锂离子电池正极材料钴酸锂(LiCoO2)过程中,LiCoO2的晶体结构随合成温度的变化。利用X射线衍射、扫描和透射电子显微技术等各种分析测试方法,对750~900 ℃范围内合成的LiCoO2的形貌、晶体结构以及电化学性能进行了表征。实验证实,随着合成温度的增加,合成的LiCoO2颗粒的形貌没有明显变化,但颗粒尺寸会增加;电子衍射结果表明,合成温度为800 ℃时可以合成Li、Co原子各自分层的六方晶体结构的LiCoO2,随着合成温度的升高LiCoO2中Li、Co原子层之间可能发生部分混合,合成温度为900 ℃时LiCoO2为立方岩盐型晶体结构;800 ℃合成的LiCoO2的充放电循环性能较好。  相似文献   

5.
The Ho0.5Sr0.5MnO3 perovskite, synthesized in air, has been studied by combining neutron powder and electron diffraction techniques. The Pnma-type structure exhibits a strong tilting of the MnO6 octahedra. This octahedra tilting and microtwinning involve a complex strained structure. No structural transition is observed down to 1.4 K, but short-range A-type antiferromagnetism running over only a few perovskite subcells is evidenced below ≈90 K. The different behavior of this perovskite compared to other Ln0.5Sr0.5MnO3 perovskites is discussed in terms of A-site cationic mismatch.  相似文献   

6.
SnP2O7 is a member of the ZrP2O7 family of materials, several of which show unusual thermal expansion behavior over certain temperature ranges and which show a number of displacive phase transitions on cooling from high temperature. Here we describe the structural properties of SnP2O7 from 100 to 1243 K as determined by X-ray and neutron powder diffraction. These studies reveal that SnP2O7 shows two phase transitions in this temperature range. At room temperature the material has a pseudo-cubic 3×3×3× superstructure. Electron diffraction studies show that the symmetry of this structure is P213 or lower. On warming to ∼560 K it undergoes a phase transition to a structure in which the subcell reflections show a triclinic distortion; above 830 K the subcell reflections show a rhombohedral distortion. Significant hysteresis in cell parameters is observed between heating and cooling. The structure of SnP2O7 is discussed with references to other members of the AM2O7 family of materials.  相似文献   

7.
The synthesis of pure and Cr-doped nanosized LiMn2O4 particles has been carried out by solid-state process on high-energy ground mixtures. In situ X-ray analysis demonstrates the spinel forms as single phase at 623 K passing through the Mn3O4 precursor at temperatures as low as 573 K. In the doped high-energy ground mixture Li-rich spinel phase forms at 623 K and Cr ions insert in the spinel octahedral site only at 723 K.A mean particle size value of 60 Å, quite independent of the reaction time, is obtained for T<673 K. For higher temperature the growing of the particles as a function of time is observed, independent of doping. The mechanical grinding seems to be the most suitable way to obtain impurity-free spinel phases at lower temperature and with smaller particle size with respect to manually ground mixtures by solid-state reaction and via sol-gel synthesis.  相似文献   

8.
The high-pressure behavior of low-dimensional selenium dioxide SeO2 (P42/mbc, Z=8) is studied with Raman scattering and synchrotron angle-dispersive X-ray powder diffraction in a diamond anvil cell up to 23 GPa at room temperature. Pressure-induced transformations in this material involve a sequence of structural distortions of the chain structure. The transformation occuring above 7.0 GPa is due to symmetry lowering to space group Pbam (Z=8) without major changes of the crystal lattice dimensions and coordination around the Se atoms. Like in the ambient pressure polymorph, the structural unit is a SeO3E polyhedron, where E is a Se non-bonded electron lone pair, or an irregular tetrahedron with the O atoms and Se lone pair at the vertices. Further structural transitions above 17 GPa are likely to be the result of additional distortions leading to monoclinic symmetry of the crystal structure. All transformations are reversible with little hysteresis.  相似文献   

9.
High pressure behavior of zinc cyanide (Zn(CN)2) has been investigated with the help of synchrotron-based X-ray diffraction measurements. Our studies reveal that under pressure this compound undergoes phase transformations and the structures of the new phases depend on whether the pressure is hydrostatic or not. Under hydrostatic conditions, Zn(CN)2 transforms from cubic to orthorhombic to cubic-II to amorphous phases. In contrast, the non-hydrostatic pressure conditions drive the ambient cubic phase to a partially disordered crystalline phase, which eventually evolves to a substantially disordered phase. The final disordered phase in the latter case is distinct from the amorphous phase observed under the hydrostatic pressures.  相似文献   

10.
高军  武巍  田艳艳  杨勇 《电化学》2012,(1):14-17
自设计建立锂空气电池实验装置,研究以掺入LiCoO2作为电催化剂的空气正极的电化学性能及其放电前后催化剂结构的变化.循环伏安、XRD及充放电测试等表明,LiCoO2能够很大程度地改善空气电极的放电性能.尤其是在放电前,将掺有LiCoO2的空气正极充电至4.1 V,此时LiCoO2的Co元素呈现较高的价态(Co3+/Co...  相似文献   

11.
Aminosilanes bearing bulky substituents on nitrogen centers, [(ArNH)2SiPhMe] (Ar = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2)) and half-sandwich lithium silylamide [(2,6-Et2C6H3NLi)(2,6-Et2C6H3NH)SiPh2] (3) have been prepared and characterized by elemental analysis, IR, EI mass and NMR (1H and 29Si) spectroscopic studies. The solid state structures of 2 and 3 have been determined by single crystal X-ray diffraction studies. The molecule 2 has a C1 symmetry due to the steric crowding, and the two N-H protons are approximately trans to each other. The amido nitrogen atoms in 2 show significant deviation from trigonal-planar geometry, and as a result, the observed Si-N bonds are marginally longer than those observed in aminosilanes with planar nitrogen atoms. The molecule 3 exists as discrete dimer with an inversion center. The Li ion in 3 forms intramolecular π-complex with the neighboring aryl (2,6-Et2C6H3) group, to form a half-sandwich lithium silylamide.  相似文献   

12.
13.
The crystal structure of (NH4)21[H3Mo57V6(NO)6O183 (H2O)18]·53 H2O a supramolecular heteropoly cluster compound (space group P63/mmcZ=2 final R1=0.1302 (I>2σ(I)) for 1745 unique reflections) was redetermined by single-crystal neutron diffraction studies at 20 K. The X-ray diffraction results reported in 1994 by Müller et al. (Z. Anorg. Allg. Chem. 620 599) are confirmed. Additionally we could localize many hydrogen positions not found so far and establish a phase transition near 240 K. Many of the ammonium ions the ligand and hydrate H2O molecules and the hydroxy group are orientationally disordered even at 20 K. The central cavity of the structure is built up by two twelve-membered rings consisting of six O-H·sdot;·O hydrogen bonds each. These strong hydrogen bonds are obviously decisive for the stability of the cluster. The hydrate H2O molecules are stronger-hydrogen-bond acceptor groups than the oxoligands of the cluster.  相似文献   

14.
The structural disorder in Ba0.6Sr0.4Al2O4 (space group P6322) was investigated by X-ray powder diffraction and selected-area electron diffraction (SAED). The initial structural model was determined using direct methods, and it was further modified by the combined use of Rietveld method and maximum-entropy method (MEM). MEM-based pattern fitting method was subsequently applied, resulting in the final reliability indices of Rwp=9.61%, Rp=6.96%, RB=1.40% and S=1.25. The electron density distribution was satisfactorily expressed by the split-atom model in which the strontium/barium and oxygen atoms were split to occupy the lower symmetry sites. The diffuse scattering in SAED was mainly attributable to the positional disorder of oxygen atoms.  相似文献   

15.
The crystal structures of two telluromolybdates CdTeMoO6 and CoTeMoO6 have been solved ab initio. CdTeMoO6 crystallizes in a tetragonal cell (space group No. 113, P 21m, Z=2) with a=5.2840(1) Å, c=9.0595(2) Å whereas CoTeMoO6 crystallizes in orthorhombic space group P21212 (No. 18) with two formula units in the unit cell of dimensions a=5.2545(1) Å, b=5.0653(1) Å, and c=8.8589(2) Å. The X-ray powder diffraction pattern data were refined by the Rietveld profile technique and led respectively to RBragg=0.07 for CdTeMoO6 and RBragg=0.07 for CoTeMoO6. The crystal structure of CdTeMoO6 is built up from corner-sharing distorted CdO4 tetrahedra which build a layer in the a,b plane, while in CoTeMoO6 cobalt atoms exhibited an octahedral distorted surrounding. Both compounds are simultaneously cation- and anion-deficient 1.1.2 superstructures of fluorite in which the electron lone pairs of tellurium are stereo-chemically active. High-resolution electron microscopy images of CdTeMoO6 showed well-ordered crystals fragments, but in some crystals defects have also been detected.  相似文献   

16.
A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.  相似文献   

17.
New phases which arise from inserting Na cations on the vacant A-sites of the compound La2/3TiO3 have been obtained, giving rise to the series La4/3−xNa3xTi2O6 (for x=0.16 and 0.28). These phases adopt a perovskite-type structure as deduced from their characterization by electron microscopy and neutron diffraction. Rietveld analyses show that the symmetry is orthorhombic (S.G. Ibmm). Electrical conductivity was determined by impedance spectroscopy, as a function of temperature. A similar behavior is observed for both samples, which behave as ionic conductors with activation energies of 0.92(3) and 0.92(5) eV, respectively.  相似文献   

18.
The crystallographic and magnetic structures of the oxygen-deficient perovskites NdBaCo2O5+δ (δ=0, 0.38, 0.5, 0.69) have been studied as a function of temperature by neutron powder diffraction. Long-range G-type antiferromagnetic order is realized for all samples apart from that with δ=0.5. The lack of magnetic order for δ=0.5 can be understood on the basis of a crystal-field-induced spin-state ordering between low-spin and high-spin Co3+. Contrary to studies of similar materials with smaller lanthanides, the δ=0 material exhibits no evidence of long-range charge ordering. No evidence of a spin-state transition as observed in YBaCo2O5 is found for any of our samples.  相似文献   

19.
A new layered indium-organic framework material, In[NC5H3(CO2)2](OH2)F has been synthesized by a hydrothermal reaction using In2O3, NH4F, 2,6-NC5H3(CO2H)2 (2,6-pyridinedicarboxylic acid), HF, and water at 200 °C. Single-crystal X-ray diffraction was used to determine the structure of the reported material. In[NC5H3(CO2)2](OH2)F has a novel layered structure consisting of InO5NF polyhedra and the pyridinedicarboxylate organic linker. Detailed structural analyses with full characterization including infrared spectrum, thermogravimetric analysis, elemental analysis, exchange reactions for the coordinated water molecule, and gas adsorption experiments are reported.  相似文献   

20.
Mixed crystals of Li[Kx(NH4)1−x]SO4 have been obtained by evaporation from aqueous solution at 313 K using different molar ratios of mixtures of LiKSO4 and LiNH4SO4. The crystals were characterized by Raman scattering and single-crystal and powder X-ray diffraction. Two types of compound were obtained: Li[Kx(NH4)1−x]SO4 with x?0.94 and Li2KNH4(SO4)2. Different phases of Li[Kx(NH4)1−x]SO4 were yielded according to the molar ratio used in the preparation. The first phase is isostructural to the room-temperature phase of LiKSO4. The second phase is the enantiomorph of the first, which is not observed in pure LiKSO4, and the last is a disordered phase, which was also observed in LiKSO4, and can be assumed as a mixture of domains of two preceding phases. In the second type of compound with formula Li2KNH4(SO4)2, the room-temperature phase is hexagonal, symmetry space group P63 with cell-volume nine times that of LiKSO4. In this phase, some cavities are occupied by K+ ions only, and others are occupied by either K+ or NH4+ at random. Thermal analyses of both types of compounds were performed by DSC, ATD, TG and powder X-ray diffraction. The phase transition temperatures for Li[Kx(NH4)1−x]SO4x?0.94 were affected by the random presence of the ammonium ion in this disordered system. The high-temperature phase of Li2KNH4(SO4)2 is also hexagonal, space group P63/mmc with the cell a-parameter double that of LiKSO4. The phase transition is at 471.9 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号