首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Single crystals of Li0.68CoO2, Li0.48CoO2, and Li0.35CoO2 were successfully synthesized for the first time by means of electrochemical and chemical delithiation processes using LiCoO2 single crystals as a parent compound. A single-crystal X-ray diffraction study confirmed the trigonal R3¯m space group and the hexagonal lattice parameters a=2.8107(5) Å, c=14.2235(6) Å, and c/a=5.060 for Li0.68CoO2; a=2.8090(15) Å, c=14.3890(17) Å, and c/a=5.122 for Li0.48CoO2; and a=2.8070(12) Å, c=14.4359(14) Å, and c/a=5.143 for Li0.35CoO2. The crystal structures were refined to the conventional values R=1.99% and wR=1.88% for Li0.68CoO2; R=2.40% and wR=2.58% for Li0.48CoO2; and R=2.63% and wR=2.56% for Li0.35CoO2. The oxygen-oxygen contact distance in the CoO6 octahedron was determined to be shortened by the delithiation from 2.6180(9) Å in LiCoO2 to 2.5385(15) Å in Li0.35CoO2. The electron density distributions of these LixCoO2 crystals were analyzed by the maximum entropy method (MEM) using the present single-crystal X-ray diffraction data at 300 K. From the results of the single-crystal MEM, strong covalent bonding was clearly visible between the Co and O atoms, while no bonding was found around the Li atoms in these compounds. The gradual decrease in the electron density at the Li site upon delithiation could be precisely analyzed.  相似文献   

2.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

3.
EuCu2SnS4 was prepared by a stoichiometric combination of the elements heated to 700 °C for 125 h. The structure was determined by single crystal X-ray diffraction methods. The compound crystallizes in the noncentrosymmetric, orthorhombic space group Ama2 with a=10.4793(1) Å, b=10.3610(2) Å, c=6.4015(1) Å, Z=4, R1=0.99% and wR2=2.37%. The structure type is that of SrCu2GeSe4. The structure can be described as a three-dimensional network built from near perfect SnS4 and distorted CuS4 tetrahedra together with EuS8 square antiprisms. The dark red compound is a semiconductor with an optical bandgap of 1.85 eV.  相似文献   

4.
We report X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), and Mössbauer spectroscopy (MS) measurements performed on a natural tapiolite with composition Fe0.57Mn0.37Ti0.10Ta1.27Nb0.67O6. XRD and MS suggest that besides being partially ordered the as-collected sample is a mixture of trirutile (P42/mnm, a=4.7532(9) Å, c=9.228(7) Å) and Nb-rich rutile (P42/mnm, a=4.856(2) Å, c=3.098(1) Å) structures. The Mössbauer spectra of the rutile (Fe, Mn, Ta, Nb)O2 were fitted to Δ=1.72±0.05 mm/s and δ=1.10±0.03 mm/s at 300 K and to Δ=2.10±0.06 mm/s and δ=1.18±0.03 mm/s at 80 K. The present results suggest that cation ordering in compounds of the tapiolite series can be easily assessed by Mössbauer spectroscopy in a way similar to that as previously demonstrated for the columbite series.  相似文献   

5.
We have prepared SrFe2/3B1/3O3 (B″=Mo, U, Te, and W) double perovskites in polycrystalline form by ceramic methods. Phases with B″=U, Te and W have been studied by X-ray powder diffraction and the results have been compared with neutron diffraction data available for B″=Mo. At room temperature, the stoichiometric samples crystallize in the tetragonal crystal system (space group I4/m, Z=4). Cell parameters when B″=U, Te and W are a=5.6936(1) Å, c=8.0637(1)Å; a=5.5776(1) Å, c=7.9144(3) Å and a=5.5707(3) Å, c=7.9081(5) Å, respectively.The Mössbauer spectra at room temperature for all compounds show hyperfine parameters belonging to two Fe3+ sites located at lattice positions with different degrees of distortion. This is in agreement with diffraction data that indicate that the series of compounds display different degrees of Fe-site disorder, which increases in the following sequence: Mo<U<Te<W.  相似文献   

6.
Phase transitions in the elpasolite-type K3AlF6 complex fluoride were investigated using differential scanning calorimetry, electron diffraction and X-ray powder diffraction. Three phase transitions were identified with critical temperatures , and . The α-K3AlF6 phase is stable below T1 and crystallizes in a monoclinic unit cell with a=18.8588(2)Å, b=34.0278(2)Å, c=18.9231(1)Å, β=90.453(1)° (a=2accc, b=4bc, c=ac+2cc; ac, bc, cc—the basic lattice vectors of the face-centered cubic elpasolite structure) and space group I2/a or Ia. The intermediate β phase exists only in very narrow temperature interval between T1 and T2. The γ polymorph is stable in the T2<T<T3 temperature range and has an orthorhombic unit cell with a=36.1229(6)Å, b=17.1114(3)Å, c=12.0502(3)Å (a=3ac−3cc, b=2bc, c=ac+cc) at 250 °C and space group Fddd. Above T3 the cubic δ polymorph forms with ac=8.5786(4)Å at 400 °C and space group . The similarity between the K3AlF6 and K3MoO3F3 compounds is discussed.  相似文献   

7.
The phase relations have been studied in the BaO-CuOx system in the range of 25.0-45.0 mol% CuO at 900-1100 °C at P(O2)=21 kPa (air) by visual polythermal analysis (VPA), powder X-ray diffraction (XRD), electron diffraction (ED) with simultaneous energy-dispersive X-ray (EDX) elemental analysis in a transmission electron microscope (TEM), and iodometric chemical analysis. The discrete deviations 2.02 (101:50), 2.04 (102:50), 2.10 (105:50) of Ba/Cu (Ba:Cu) composition from the stoichiometric ratio 2:1 have been found for the known Ba2CuO3+δ oxides in the subsolidus region 900-970 °C. Unit cell parameters of the 101:50 orthorhombic oxide, 102:50 tetragonal one, 105:50 orthorhombic one are, respectively, a=4.049, b=3.899, c=13.034 Å; a=3.985, c=12.968 Å; a=4.087, b=3.897 and c=12.950 Å. ED patterns of the 101:50, 102:50, 105:50 oxides show characteristic supercell reflections with the respective vector 1/60[5 4 0], ≈2/11〈1 1 0〉 and 1/6[2 0 0]. Oxides of the 2:1, 7:4, 5:3 and 23:20 compositions have been found in the crystallization region 970-1050 °C. Unit cell parameters of the 2:1 orthorhombic oxide are a=4.095, b=3.795, c=13.165 Å. Interplanar spacings and X-ray characteristic peak intensities of the 7:4, 5:3 and 23:20 oxides are given. Oxides 2:1 and 7:4 melt pseudocongruently at 1020 and 1005 °C, oxides 5:3 and 23:20 melt incongruently at 995 and 980 °C, respectively. A diagram of the phase relations in the studied region of the BaO-CuOx system has been constructed, whose structure is considered as the total projection of phase states of the system existing for different x.  相似文献   

8.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

9.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

10.
11.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

12.
Two new complex vanadyl(IV)phosphates Na2MVO(PO4)2 (M=Ca, Sr) were synthesized in evacuated quartz ampoules and investigated by means of X-ray diffraction, electron microscopy, DTA, ESR and magnetic susceptibility measurements. The crystal structure of Na2SrVO(PO4)2 was solved ab initio from X-ray powder diffraction data. Both compounds are isostructural: a=10.5233(3) Å, b=6.5578(2) Å, c=10.0536(3) Å and a=10.6476(3) Å, b=6.6224(2) Å, c=10.2537(3) Å for Ca and Sr, respectively; S.G. Pnma, Z=4. The compounds have a three-dimensional structure consisting of V4+O6 octahedra connected by PO4 tetrahedra via five of the six vertexes forming a framework with cross-like channels. The strontium and sodium atoms are located in the channels in an ordered manner. Electron diffraction as well as high-resolution electron microscopy confirmed the structure solution. The new vanadylphosphates are Curie-Weiss paramagnets in a wide temperature range down to 2 K with θ=12 and 5 K for Ca and Sr phases, respectively.  相似文献   

13.
Two non-stoichiometric Gd compounds, GdCu5−xTrx (Tr=Al, Ga) have been synthesized from the corresponding elements by high temperature reactions in sealed tantalum containers. They crystallize in the hexagonal CaCu5-type (Pearson's symbol hP6, space group P6/mmm, No. 191) with lattice parameters determined from single-crystal X-ray diffraction at room temperature as follows: a=5.0831(10) Å; c=4.156(2) Å for GdCu3.98(4)Al1.02(4), and a=5.1025(10) Å; c=4.155(2) Å for GdCu3.9(1)Ga1.1(1), respectively. Structure refinements from single crystal X-ray diffraction data reveal that substitution of Cu for Al or Ga takes place preferably on one of the two transition metal sites with site symmetry mmm (3g). Both compounds order antiferromagnetically below ∼40 K and ∼36 K, respectively, as determined from temperature dependent dc-magnetization, resistivity and heat-capacity measurements.  相似文献   

14.
Single crystals of the LiCoO2-LiAlO2 solid solution compounds LiAl0.32Co0.68O2 and LiAl0.71Co0.29O2 were synthesized by a flux method using alumina crucibles. A single-crystal X-ray diffraction study confirmed the trigonal space group and the lattice parameters a=2.8056(11) Å, c=14.1079(15) Å, and c/a=5.028 for LiAl0.32Co0.68O2, and a=2.8023(7) Å, c=14.184(4) Å, and c/a=5.061 for LiAl0.71Co0.29O2. The crystal structures have been refined to the conventional values R=3.2% and wR=2.4% for LiAl0.32Co0.68O2, and R=3.6% and wR=3.5% for LiAl0.71Co0.29O2. The evidence of the location of Al atoms in the pseudotetragonal coordination (6c site), reported previously in LiAl0.2Co0.8O2, could not be observed in the present electron density distribution maps in both LiAl0.32Co0.68O2 and LiAl0.71Co0.29O2. The octahedral distortion analysis indicated that the Al-substitution strongly affected the distortion of the LiO6 octahedron in this solid-solution compound system, but hardly affected that of the (Al.Co)O6 octahedron.  相似文献   

15.
The compounds CeMIn5 (M=Co, Rh, Ir) have been shown to exhibit heavy fermion behavior. In order to better understand this effect and the nature of the observed superconductivity, we have synthesized and characterized the non-magnetic analogs, LaMIn5 (M=Co, Rh, Ir). The structures of LaCoIn5, LaRhIn5, and LaIrIn5 were determined by single-crystal X-ray diffraction. CeMIn5 and LaMIn5 compounds are isostructural and adopt a tetragonal structure with space group P4/mmm, Z=1. Lattice parameters are a=4.6399(4) and c=7.6151(6) Å for LaCoIn5, a=4.6768(3) and c=7.5988(7) Å for LaRhIn5, and a=4.6897(6) and c=7.5788(12) Å for LaIrIn5. We compare these experimental data with band structure computations and examine structural trends that affect the magnetic and transport properties of these compounds.  相似文献   

16.
The fluorine-containing derivatives of Sr2MnGaO5.5 were prepared by treatment with XeF2 at temperatures ranging from 300°C to 600°C. The compounds crystallize in a tetragonal unit cell with atap, ct≈2ap (ap—the parameter of the perovskite subcell). An increase in fluorine content is accompanied by a reduction of the Mn oxidation state due to a partial replacement of oxygen by fluorine. The crystal structure of Sr2MnGaO4.78F1.22 was determined by electron diffraction and X-ray powder diffraction (a=3.85559(2) Å, c=7.78289(6) Å, S.G. P4/mmm, RI=0.012, RP=0.019). The structure consists of alternating (MnO2), (SrO) and (GaO0.78F1.22) layers. The Ga atoms are situated in slightly elongated octahedra, the MnO6 octahedra are characterized by two short apical Mn-O distances of 1.876(8) Å and four long equatorial ones of 1.9278(1) Å. This is interpreted as an “apically compressed” type of Jahn-Teller distortion, in contrast to the “apically elongated” one in the Sr2MnGaO5+δ brownmillerites with different oxygen content. Possible structural reasons for the reversed Jahn-Teller effect are discussed.  相似文献   

17.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

18.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

19.
The ternary nitrides, Ca4TiN4 and Ca5NbN5, were synthesized in sealed niobium tubes using lithium nitride as a flux at 900 and 1050 °C, respectively. The structures of both compounds were solved from single-crystal X-ray diffraction data. Ca4TiN4 is the first example of a calcium group IV nitride; it crystallizes in the triclinic space group (No. 2) with cell parameters a=5.9757(5) Å, b=6.0129(5) Å, c=6.0116(12) Å, α=71.565(4)°, β=79.471(4)°, γ=68.258(4)° and Z=2. Ca4TiN4 is isostructural with Na4TiO4 and contains tetrahedral TiN4 units connected through edges and corners to CaN4 tetrahedra and CaN5 square pyramids. Ca5NbN5 crystallizes in the monoclinic space group C2/m (No. 12) with cell parameters a=11.922(7) Å, b=6.878(5) Å, c=8.936(7) Å, β=101.22(3)° and Z=4. Ca5NbN5 is isostructural with Ba5NbN5; the structure contains NbN4 tetrahedra that share vertices with CaN5 trigonal bipyramids.  相似文献   

20.
A new compound, sodium tin trifluoride (NaSnF3, which we denote BING-12 for SUNY at Binghamton, Structure No. 12), was synthesized solvothermally from a pyridine-water solvent system. The new compound crystallized in the monoclinic space group C2/c (No. 15), with a=11.7429(12) Å, b=17.0104(18) Å, c=6.8528(7) Å, β=100.6969(2)°, V=1345.1(2) Å3 and Z=16. The layered structure consists of outer pyramidal SnF3 units, where the fluorides surround a central layer of six- and seven-coordinate sodium atoms. The layers are stabilized by charged Na+ galleries that reside in the center of the layers. Tin trifluorophosphate (Sn3F3PO4, Compound 2) was isolated from a related synthetic system, and crystallized in the rhombohedral space group R3 (No. 146), with a=11.8647(11) Å, c=4.6291(6) Å, V=564.34(10) Å3 and Z=3. The framework is made up of helical -Sn-F- chains, which are connected by phosphate groups. The materials were characterized by powder X-ray diffraction (PXRD), variable temperature PXRD (VT-PXRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号