共查询到20条相似文献,搜索用时 0 毫秒
1.
L.H. Liu H.P. TanT.W. Tong 《Journal of Quantitative Spectroscopy & Radiative Transfer》2002,72(6):747-756
The internal distribution of spectral radiation absorption in a semitransparent spherical particle irradiated uniformly and isotropically is determined by the ray tracing method, and the detailed computation formulae for the internal spectral radiation absorption are deduced. The computed results show that the peak of internal volumetric spectral radiation absorption may locate at the interior shell of the particle. The dimensionless volumetric spectral radiation absorption is higher near the center for weakly absorbing or small spheres, but the dimensionless volumetric spectral radiation absorption is higher near the surface for strongly absorbing or large spheres. The corresponding physical interpretations of the internal spectral absorption distribution are given. 相似文献
2.
Hong-Shun Li Joachim Werther 《Journal of Quantitative Spectroscopy & Radiative Transfer》2006,97(1):142-159
Due to the ray effect, it is not suitable to employ the discrete ordinates method to calculate the radiation field and the image-formation process in radiative problems with isolated radiative sources (such as point and line sources, isolated medium or boundary source). In this paper, a hybrid method, named Monte Carlo-discrete ordinates method (MCDOM) is developed. Firstly, the Monte Carlo method is used to calculate the emission process. Secondly, the discrete ordinates method is employed to calculate the scattering process, correspondingly, an alternative energy partitioning method is proposed to combine the above two conventional methods. Thirdly, the DOS+ISW algorithm (JQSRT, 2003, 78: 437-453) is used to calculate the image-formation process. Finally, the MCDOM is applied to computing the image formation of an endoscope, which was used to study the hydrodynamics of circulating fluidized beds (Powder Technology, 2001;114:71-83). 相似文献
3.
The numerical simulation method of radiative entropy generation in participating media presented by Caldas and Semiao [Entropy generation through radiative transfer in participating media: analysis and numerical computation. JQSRT 2005;96:423-37] is extended to analyze the radiative entropy generation in the enclosures filled with semitransparent media. A discrete ordinates method is used to solve radiative transfer equation and radiative entropy generation. Two different examples are employed to verify the numerical simulation method of radiative entropy generation in the enclosure. Numerical results of dimensionless radiative entropy generation of enclosure are identical to that of entire thermodynamics analysis for the enclosure system. This numerical simulation method can be used in the entropy generation analysis of high-temperature systems such as boilers and furnaces, in which radiation is the dominant mode of heat transfer. 相似文献
4.
Dhrubajyoti Sarma P. Mahanta 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,96(1):123-135
A general formulation of the discrete transfer method is provided to analyze radiative heat transfer problems in a participating medium subjected to collimated radiation. The formulation is validated by considering 1-D planar absorbing, emitting and anisotropically scattering gray medium in radiative equilibrium. Anisotropy of the medium is approximated by linear anisotropic phase function. For the purpose of comparison, the problem is also solved analytically. Results are obtained for different angles of incidence of the collimated radiation. At a given angle of incidence, results are obtained for forward, isotropic and backward scattering situations. Heat flux results are compared over a wide range of values of the extinction coefficient. Emissive power distributions in the medium are also obtained for some cases. The discrete transfer method results are found to compare very well with the analytic results. 相似文献
5.
First, we apply the modified differential approximation (MDA) suggested by Chandrasekhar to transient radiative transfer in a scattering planar medium exposed to collimated pulse irradiation. Next, a hybrid method of the P1/3 approximation suggested by Olson and the MDA is developed. The hybrid method may be referred to as the modified P1/3 approximation (MP1/3A) and is also applied to the same example. Comparisons of the results obtained by solving the MDA, the MP1/3A and the exact integral equation are made. The comparisons show that the temporal distribution of the transmissivity obtained by the MDA contains a small protuberance or an abrupt slope change, which decreases with the decrease of the scattering albedo. The results obtained by the MP1/3A are more accurate than those obtained by the MDA for most of the cases considered, because the MP1/3A corrects the propagation speed of the transmitted radiation. 相似文献
6.
To avoid the complicated and time-consuming computation of curved ray trajectories, a discontinuous finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two cases of radiative heat transfer in two-dimensional rectangular gray semitransparent graded index medium enclosed by opaque boundary are examined to verify this discontinuous finite element method. Special layered and radial graded index distributions are considered. The predicted dimensionless net radiative heat fluxes and dimensionless temperature distributions are determined by the discontinuous finite element method and compared with the results obtained by the curved Monte Carlo method in references. The results show that the discontinuous finite element method has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium. 相似文献
7.
L. Zhang 《Journal of Quantitative Spectroscopy & Radiative Transfer》2009,110(13):1085-1096
Both Galerkin finite element method (GFEM) and least squares finite element method (LSFEM) are developed and their performances are compared for solving the radiative transfer equation of graded index medium in cylindrical coordinate system (RTEGC). The angular redistribution term of the RTEGC is discretized by finite difference approach and after angular discretization the RTEGC is formulated into a discrete-ordinates form, which is then discretized based on Galerkin or least squares finite element approach. To overcome the RTEGC-led numerical singularity at the origin of cylindrical coordinate system, a pole condition is proposed as a special mathematical boundary condition. Compared with the GFEM, the LSFEM has very good numerical properties and can effectively mitigate the nonphysical oscillation appeared in the GFEM solutions. Various problems of both axisymmetry and nonaxisymmetry, and with medium of uniform refractive index distribution or graded refractive index distribution are tested. The results show that both the finite element approaches have good accuracy to predict the radiative heat transfer in semitransparent graded index cylindrical medium, while the LSFEM has better numerical stability. 相似文献
8.
Jaona Randrianalisoa Dominique Baillis 《Journal of Quantitative Spectroscopy & Radiative Transfer》2010,111(10):1372-1388
This contribution presents a new Ray-tracing method for calculating effective radiative properties of densely packed spheres in non-absorbing or semitransparent host medium. The method is restricted to the geometric optic objects and neglects the wave effects. The effective radiative properties such as the absorption and scattering coefficients, and phase function are retrieved from the calculation of mean-free paths of scattering and absorption, and the angular scattering probability of radiation propagating in the dispersed medium. The model accounts for the two geometric effects called here as non-point scattering and ray transportation effects. The successful comparison of the current model with data of radiative properties and transmittances of particle beds in a non-absorbing medium reported in the literature confirm its suitability. It is shown that: (i) for opaque or absorbing particles (not systematically opaque), the non-point scattering is the dominant geometric effects whereas both non-point scattering and ray transportation effects occur for weakly absorbing and transparent particles. In the later cases, these two geometric effects oppose and may cancel out. This may explain why the Independent scattering theory works well for packed of quasi-transparent particles; (ii) the non-point scattering and ray transportation effects can be captured through the scattering and absorption coefficients while using the classical form of phase function. This enables using the standard radiative transfer equation (RTE); (iii) the surrounding medium absorption can be accounted for without any homogenization rule. It contributes to increasing the effective absorption coefficient of the composite medium as expected but, at the same time, it reduces the particle extinction; and (iv) the current transfer calculation predicts remarkably the results of direct Monte Carlo (MC) simulation. This study tends therefore to confirm that the RTE can be applied to densely packed media by using effective radiative properties. 相似文献
9.
L.H. Liu 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,83(2):223-228
A discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index. The curved ray trajectory is locally treated as straight line and the complicated and time-consuming computation of ray trajectory is cut down. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index. 相似文献
10.
The ray-tracing technique has the main difficulty in solving radiative transfer in the medium with variable spatial refractive index. Recently, three methods have been developed for the application of the ray-tracing technique in those medium. To compare and discuss the numerical characteristics of those methods, a semitransparent slab with variable spatial refractive index is taken as an example, and the reflectivity and the transmissivity of the slab are computed by the curved ray-tracing method, the multi-layer approach, and the discrete curved ray-tracing method, respectively. As the result, it is shown that, the discrete curved ray-tracing method gives the result with good accuracy and convergence characteristics than the multi-layer approach. Due to accounting physically inexistent reflection on the interface between sublayers, the multi-layer approach converges slowly. 相似文献
11.
Zied Cheheb Fethi Albouchi Sassi Ben Nasrallah 《Journal of Quantitative Spectroscopy & Radiative Transfer》2008,109(4):620-635
This paper deals with a theoretical and an experimental study allowing the measurement of the radiative and the conductive properties of semitransparent materials. The method consists of applying a crenel heat flux on the front face of a semitransparent sample and recording the temperature at the rear face using an open thermocouple junction.Parameter identification is performed by the minimization of the ordinary least-squares function comparing the measured and the calculated temperatures. This later is obtained from the thermal model describing the heat transfer by conduction and radiation in the medium. This model is built by the thermal quadrupole formalism.Measurements are reported on commercial glasses and plexiglass samples, and the used iterative algorithm is based on the Gauss-Newton method. 相似文献
12.
L.H. Liu L. Zhang H.P. Tan 《Journal of Quantitative Spectroscopy & Radiative Transfer》2006,97(3):436-445
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium. 相似文献
13.
J.M. Zhao 《Journal of Quantitative Spectroscopy & Radiative Transfer》2007,107(1):1-16
A discontinuous spectral element method (DSEM) is presented to solve radiative heat transfer in multidimensional semitransparent media. This method is based on the general discontinuous Galerkin formulation. Chebyshev polynomial is used to build basis function on each element and both structured and unstructured elements are considered. The DSEM has properties such as hp-convergence, local conservation and its solutions are allowed to be discontinuous across interelement boundaries. The influences of different schemes for treatment of the interelement numerical flux on the performance of the DSEM are compared. The p-convergence characteristics of the DSEM are studied. Four various test problems are taken as examples to verify the performance of the DSEM, especially the performance to solve the problems with discontinuity in the angular distribution of radiative intensity. The predicted results by the DSEM agree well with the benchmark solutions. Numerical results show that the p-convergence rate of the DSEM follows exponential law, and the DSEM is stable, accurate and effective to solve multidimensional radiative transfer in semitransparent media. 相似文献
14.
L.H. Liu H.C. Zhang H.P. Tan 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,84(3):357-362
A Monte Carlo discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index, in which the Monte Carlo method is combined with the discrete curved ray-tracing method. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions and the dimensionless radiative heat flux are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the Monte Carlo discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index. 相似文献
15.
L.H. Liu 《Journal of Quantitative Spectroscopy & Radiative Transfer》2007,103(3):536-544
To avoid the complicated and time-consuming computation of curved ray trajectories, a least-squares finite element method based on discrete ordinate equation is extended to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Four cases of radiative heat transfer are examined to verify this least-squares finite element method. Linear and nonlinear graded index are considered. The predicted dimensionless net radiative heat fluxes are determined by the least-squares finite element method and compared with the results obtained by other methods. The results show that the least-squares finite element method is stable and has a good accuracy in solving the multi-dimensional radiative transfer problem in a semitransparent graded index medium, while the Galerkin finite element method sometimes suffers from nonphysical oscillations. 相似文献
16.
Cristian Muresan Christophe Menezo 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,84(4):551-562
The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method. 相似文献
17.
Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index. 相似文献
18.
The curved ray tracing method (CRT) is extended to radiative transfer in the linear-anisotropic scattering medium with graded index from non-scattering medium. In this paper, the CRT is presented to solve one-dimensional radiative transfer in the linear-anisotropic scattering gray medium with a linear refractive index and two black boundaries. The predicted temperature distributions and radiative heat flux at radiative equilibrium are determined by the proposed method, and numerical results are compared with the data in references. The results show that the CRT has a good accuracy for radiative transfer in the linear-anisotropic scattering medium with graded index and the dimensionless emissive power and dimensionless radiative heat flux depend on the dimensionless refractive index gradient. It can also be seen that the dimensionless refractive index gradient has important effects on the temperature discontinuity at the boundaries. 相似文献
19.
S.M.R. Aghamiri 《Optics Communications》2008,281(3):356-359
Analyzing the effect of ionized gamma irradiation on the optical parameters of materials is a solution for finding newer techniques in the field of detector and dosimeter systems. A PMMA (polymethylmethacrylate) polymer was radiated from a 60Co source with a power of 1800 C and a constant dose rate of 1.44 kGy/h in three steps of 5, 25 and 61.2 kGy. The ionized gamma irradiation affected the refractive index of polymer and therefore it changes the polarization of the incident light. The difference in the polarization phase shift of the polymer depended on the dose it had been irradiated with. 相似文献