首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinel Li1−xCo2O4−δ samples with 0.44≤(1−x)≤1 have been synthesized by chemically extracting lithium with the oxidizer NO2BF4 in acetonitrile medium from the LT-LiCoO2 synthesized at 400°C. Rietveld analysis of the X-ray diffraction data reveals that the Li1−xCo2O4−δ samples adopt the normal cubic spinel structure with a cation distribution of (Li1−x)8a[Co2]16dO4−δ. Redox iodometric titration data indicate that the LT-LiCoO2 tends to lose oxygen on extracting lithium and the spinel Li1−xCo2O4−δ samples are oxygen-deficient. Both infrared spectroscopic and magnetic susceptibility data suggest that the LiCo2O4−δ spinel is metallic with itinerant electrons. The tendency to lose oxygen on extracting lithium from the LT-LiCoO2 and the observed metallic behavior of the spinel LiCo2O4−δ are explained on the basis of a qualitative band diagram.  相似文献   

2.
Superfine Li1−xMn2O4−σ powders were successfully synthesized by the alcohol-thermal method using 0.01 mol of MnO2, 0.01mol of LiOH·H2O, and 0.06mol of NaOH as starting materials at 160-200°C. The products are characterized by XRD, TEM, ED, BET, and ICP. Results show that the Li0.74Mn2O3.74 powder prepared at 200°C has an average size of 180 nm with BET surface areas of 16.44 m2/g. A possible formation mechanism is proposed. It was concluded that the alcohol acts not only as the solvent but also as the reducing agent in the synthesis of Li1−xMn2O4−σ powders. The effects of reaction temperature and the contents of NaOH and LiOH on the formation of single phase Li1−xMn2O4−σ were investigated.  相似文献   

3.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

4.
Partial substitution of fluorine for oxygen in VO2 and V2O5 was achieved by reacting V and V2O5 under 1.33 kb pressure in the presence of concentrated or dilute solutions of HF. Two new phases having the composition V2O5−xFx (0 < x < 0.025) and VO2−xFx (0 < x < 0.2) were prepared. X-Ray diffraction studies have been carried out on both phases and show the structure of V2O5−xFx to be orthorhombic and isostructural to V2O5, while VO2−xFx has a tetragonal structure of the rutile type (for x ? 0.03). Single-crystal-resistivity data show V2O5−xFx to be a semiconductor, whereas VO2−xFx undergoes a metallic to semiconductor transition at a temperature solely dependent upon the value of x.  相似文献   

5.
The series Ba1−xLaxTi1−xCrxO3 (0≤x≤1) was synthesized at 1400°C for about 60 h. Their structure was carefully analyzed by the use of powder X-ray diffraction and Rietveld analysis software GSAS (General Structure Analysis System). Four solid solutions are found in this series: tetragonal solid solution Ba1−xLaxTi1−xCrxO3 (0≤x≤0.029), cubic solid solution Ba1−xLaxTi1−xCrxO3 (0.0365≤x≤0.600), rhombohedral solid solution Ba1−xLaxTi1−xCrxO3 (0.700≤x≤0.873), and orthorhombic solid solution Ba1−xLaxTi1−xCrxO3 (0.956≤x≤1). There are corresponding two-phase regions between the adjacent two solid solutions. The detailed lattice parameters are presented. The relationship between the lattice parameters and the composition of the solid solutions is developed.  相似文献   

6.
The morphologies of the charge carriers in the perovskite system SrFe1−xTixO3−δ are explored by transport and magnetic measurements. Oxygen vacancies are present in all samples, but they do not trap out the Fe3+ ions they introduce. The x=0.05 composition was prepared with three different values of δ. They all show small-polaron conduction above 225 K; but where there is a ratio c=Fe4+/Fe<0.5, the polaron morphology appears to change progressively with decreasing temperature below 225 K to two-Fe polarons that become ferromagnetically coupled in an applied magnetic field at lower temperatures; With an applied field of 2500 Oe, divergence of the paramagnetic susceptibility for zero-field-cooled and field-cooled samples manifests a greater stabilization of ferromagnetic pairs on cooling in the applied field. With a c>0.5, the data are consistent with a disproportionation reaction 2Fe4+=Fe3++Fe(V)O6/2 that inhibits formation of two-Fe polarons and, on lowering the temperature, creates Fe3+-Fe(V)-Fe3+ superparamagnetic clusters.  相似文献   

7.
8.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

9.
The crystal structure of the defect perovskite series Sr1−xTi1−2xNb2xO3 has been investigated over a range of temperatures using high-resolution synchrotron X-ray diffraction, neutron diffraction and electron diffraction. Three distinct regions were observed: 0<x≤0.125 was a solid solution of Sr1−xTi1−2xNb2xO3 with minor SrTiO3 intergrowth, 0.125<x≤0.2 was a pure Sr1−xTi1−2xNb2xO3 solid solution adopting the cubic perovskite type structure (Pmm) and for x>0.2 Sr0.8Ti0.6Nb0.4O3 and Sr3TiNb4O15 formed a two phase region. The cubic structure for Sr0.8Ti0.6Nb0.4O3 was stable over the temperature range 90-1248 K and the thermal expansion co-efficient was determined to be 8.72(9)×10−6 K−1. Electron diffraction studies revealed diffuse scattering due to local scale Ti/Nb displacements and slightly enhanced octahedral rotations that did not lead to long range order. The octahedral rotations were observed to ‘lock-in’ at temperatures below ∼75 K resulting in a tetragonal structure (I4/mcm) with anti-phase octahedral tilting about the c-axis.  相似文献   

10.
Electron spin resonance (ESR) and magnetic-susceptibility measurements on the Li1+xTi2?xO4 spinel system (0 ≤ x ≤ 13) indicate the presence of two types of localized moments in this material. In both cases, an unpaired electron is trapped as a Ti3+ ion in a crystal field that is predominantly octahedral, but with a strong tetragonal component. This type of crystal field cannot arise in the stoichiometric spinel. We propose two types of defect in the title spinel system: an oxygen vacancy and a hydroxyl ion. Unpaired electrons are trapped as Ti3+ ions adjacent to these defects, and it is argued that the strong tetragonal field is associated with the formation of a static (TiO)+ ion by a displacement of the titanium ion from the defect. Spin relaxation occurs via a thermal ionization of the trapped electron that appears to be associated with a static-dynamic transition in the titanium-ion displacement.  相似文献   

11.
Perovskite-type cobaltates in the system La2Co1+z(MgxTi1−x)1−zO6 were studied for z=0≤x≤0.6 and 0≤x<0.9, using X-ray and neutron powder diffraction, electron diffraction (ED), magnetic susceptibility measurements and X-ray absorption near-edge structure (XANES) spectroscopy. The samples were synthesised using the citrate route in air at 1350 °C. The space group symmetry of the structure changes from P21/n via Pbnm to Rc with both increasing Mg content and increasing Co content. The La2Co(MgxTi1−x)O6 (z=0) compounds show anti-ferromagnetic couplings of the magnetic moments for the Co below 15 K for x=0, 0.1 and 0.2. XANES spectra show for the compositions 0≤x≤0.5 a linear decrease in the L3/(L3+L2) Co-L2,3 edge branching ratio with x, in agreement with a decrease of the average Co ion spin-state, from a high-spin to a lower-spin-state, with decreasing nominal Co2+ ion content.  相似文献   

12.
Polycrystalline samples of type BiTa1−xNbxO4 (0?x?1) in both the orthorhombic and triclinic phases have been characterized by a combination of powder X-ray diffraction, UV-Vis and Raman spectroscopy. The addition of Nb to BiTaO4 subtly alters the structure and spectroscopic properties of both the orthorhombic and triclinic oxides. The difference in bonding from the Nb 4d and Ta 5d electrons results in an unusual variation in the cell parameters in the orthorhombic form. In both structural types the addition of Nb results in a shift of the strong UV-Vis absorption feature towards the visible region. This feature noticeably broadens and shifts towards lower energy in the triclinic structures.  相似文献   

13.
The series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30 have been synthesized at 1400°C in air. They exhibit efficient excitation at about 400 nm and typical emission of Eu3+ at about 580-620 nm, form solid solutions within 0.0?x?2.0 and 0?y?4 respectively, and crystallized in P4/mbm at room temperature with Eu atoms occupied at centrosymmetric site (0, 0, 0). Their conductivity is very low (2.8×10−6 Ω−1 cm−1 at 740°C for Ba6Ti2Ta8O30).  相似文献   

14.
Incommensurately modulated structure of the composite crystal InCr1−xTixO3+x/2 was refined by the profile fitting of powder X-ray diffraction based on the four-dimensional superspace group. The crystal consists of two monoclinic subsystems mutually incommensurate in b. The first subsystem is the alternate stacking of an edge-shared InO6 octahedral layer and a Cr/Ti triangle-lattice plane along c*. A sheet of oxygen atoms constructing the second subsystem is also extending on the Cr/Ti plane. The whole structure is the alternate stacking of an edge-shared InO6 octahedral layer and a Cr/Ti-O plane, where displacive modulation of O ions is prominent. Metal ions on the Cr/Ti-O plane are surrounded by three or four oxygen ions on the plane and, in addition, two axial ones.  相似文献   

15.
通过煅烧的方式制得多壁碳纳米管(MWCNT)质量分数为3%的MWCNT/Li1.18Ni0.15Co0.15Mn0.52O2锂离子电池复合正极材料,并测试了复合正极材料在不同服役温度环境下的电化学性能:-20和60℃下服役时,其放电容量分别高达169、303 mAh·g-1,且展示出良好的倍率性能和循环稳定性。结合电化学阻抗测试结果可知,MWCNT均匀附着在层状粒子的表面,有效减少了电解液对电极材料的侵蚀,阻碍了表面膜的生成,同时提高了材料的电子电导率。  相似文献   

16.
The structural properties of the system La1−xCexY2Ni9 with xCe=0, 0.5 and 1 have been investigated by electron probe microanalysis, powder X-ray diffraction and absorption spectroscopy. The compound LaY2Ni9 adopts a rhombohedral structure of PuNi3-type (R-3m space group, Z=3). It can be described as an intergrowth between RM5 (Haücke phase) and RM2 (Laves phase) type structures. Among the two available crystallographic sites for R atoms, lanthanum occupies preferentially the site 3a leading to a partially ordered ternary compound. Substitution by cerium involves anisotropic variations of the cell parameter with a decrease of a and an increase of c leading to an overall cell volume reduction. Increasing cerium content does not induce any symmetry change but leads to a statistical distribution of the rare earths over the two sites 3a and 6c involving an evolution toward a pseudo-binary compound. This behavior is related to the intermediate valence state of cerium observed by X-ray absorption spectroscopy. The hydriding properties of the two compounds LaY2Ni9 and CeY2Ni9 are described in relation with their crystallographic structure.  相似文献   

17.
This paper describes the results of electron microscopy, high-temperature powder neutron diffraction, and impedance spectroscopy studies of brownmillerite-structured Ba2In2O5 and perovskite structured Ba(InxZr1−x)O3−x/2. The ambient temperature structure of Ba2In2O5 is found to adopt Icmm symmetry, with disorder of the tetrahedrally coordinated (In3+) ions of the type observed previously in Sr2Fe2O5. Ba2In2O5 undergoes a ∼6-fold increase in its ionic conductivity over the narrow temperature range from ∼1140 K to ∼1230 K, in broad agreement with previous studies. This transition corresponds to a change from the brownmillerite structure to a cubic perovskite arrangement with disordered anions. Electron microscopy investigations showed the presence of extended defects in all the crystals analyzed. Ba(InxZr1−x)O3−x/2 samples with x=0.1 to 0.9 adopt the cubic perovskite structure, with the lattice parameter increasing with x.  相似文献   

18.
The room-temperature diffuse-reflectance spectra of compositions within the Li1+xTi2?xO4 spinel system (0 ≤ x ≤ 13) show three absorption bands in the range 4000 to 48,000 cm?1. Two high-energy absorption bands correspond to charge-transfer transitions from the oxygen-2p valence band to the titanium t2g and σ1 conduction bands, where the σ1 band of eg character has hybridized titanium-3d and titanium-4s parentage. The absorption band arising from promotion of electrons to the empty σ1 band does not alter with composition whereas the absorption band arising from promotion of electrons to the partially filled t2g band narrows as the concentration of conduction electrons in the t2g band decreases. These two high-energy absorption bands fall entirely within the ultraviolet spectral region, and the absorption edge in Li43Ti53O4 (x = 13) occurs at 24,300 cm?1 (3.02 eV). A low-energy absorption band is observed in compositions with x < 13 and in samples of Li43Ti53O4 reduced in hydrogen at elevated temperatures. This band straddles the boundary between the visible and infrared spectral regions and shifts toward lower energy as the concentration of conduction electrons in the t2g band decreases. The possible origins of the band are discussed; the argument is in favor of a d-d interband transition from states in the partially filled t2g band to states in the empty σ1 band.  相似文献   

19.
To extend the study of Bi3O3-Ln2O3-V2O5 systems, an investigation of Bi0.85Ln0.15(1−n)V0.15nO1.5+0.15n materials (Ln=La, Pr, Nd, Sm, Tb, Ho, Yb), which adopt a fluorite-related structure for specific composition ranges, has been realized. The composition dependence of thermal stability of the structure evidenced using thermodiffractometry, and of conductivity properties determined from impedance spectroscopy, has been investigated. The pure anionic oxide conductor behavior evidenced by emf measurements of an oxygen concentration cell for Bi0.85Pr0.105V0.045O1.545 mixed oxide can be considered for other samples containing other rare earths. X-ray powder crystal structure refinements have been realized for praseodymium-containing terms Bi0.85Pr0.15(1−n)V0.15nO1.5+0.15n; n=0.1, 0.3, 0.5) and for a selection of the other lanthanide elements (Ln=La, Sm, Tb, Ho, and Yb) with n=0.3, on the basis of the Willis model. The stability and modification of the crystal structure are discussed.  相似文献   

20.
A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO2 and Ce1−xYxO2−x/2 (x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce1−xYxO2−x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ∼300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO1.5 in CeO2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y2O3-related type-C phase appears in the final product. Y3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol−1 for pure CeO2 to 138.6 kJ mol−1 for CeO2 doped with 35 mol% YO1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号