首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mechanical activation (MA) of the LiOH+V2O5 and Li2CO3+V2O5 mixtures followed by brief heating at 673 K was used to prepare dispersed Li1+xV3O8. It was shown that structural transformations during MA are accompanied by reduction processes. EPR spectra of Li1+xV3O8 are attributed to vanadyl VO2+ ions with weak exchange interaction. The interaction of localized electrons (V4+ ions) with electron gas (delocalized electrons), which is exhibited through the dependence of EPR line width of vanadium ions versus measurement temperature (C–S–C relaxation), is revealed. It is shown that C–S–C relaxation is different for intermediate and final products. The properties of mechanochemically prepared Li1+xV3O8 are compared with those of HT-Li1+xV3O8, obtained by conventional solid state reaction. Mechanochemically prepared Li1+xV3O8 is characterized by a similar amount of vanadium ions, producing electron gas, but a higher specific surface area.  相似文献   

2.
Electron paramagnetic resonance (EPR) and magnetic susceptibility measurements on the recently synthesized vanadates M2CrV3O11−x (M=Zn, Mg) have been analyzed. Two absorption lines with g≈2.0 (type I) and g≈1.98 (type II) were recorded in the EPR spectra, which can be attributed to V4+ ions and Cr3+ ion clusters (pairs), respectively. The exchange constant J between Cr3+ ions has been calculated, using both EPR and magnetic susceptibility data. Fitting of the EPR and magnetic susceptibility data has been carried out. The sign of J is a negative one for all samples and indicates antiferromagnetic interactions. Some difference in the J constant value among samples has been obtained. Volumetric titration confirms distinctly the presence of vanadium V4+ ions in the investigated compounds.  相似文献   

3.
The structural mechanism which accommodates nonstoichiometry in V2O3 was investigated by transmission electron microscopy. The existence of distinct diffuse scattering was observed as the boundary of the homogeneity range was approached. The analysis of the diffuse scattering indicates the formation of one-dimensional microdomains in the c direction having a structure similar to VO2. Orientation relations between V2O3 and V3O5 (which is formed from V2O3 by heat treatment in an oxidizing atmosphere) show that V3O5 is formed by redistribution of vanadium ions among the octahedral interstitial sites of common close-packed sublattice consisting of oxygen ions. Possible relations between the present observations and physical properties in nonstoichiometric V2O3+x are discussed.  相似文献   

4.
Mössbauer spectra of the Fe1+xV2−xO4 spinel solid solutions are taken to investigate the cation distribution. Room temperature spectra can be interpreted by assuming that the cation distribution is represented approximately as Fe2+[Fe3+xV3+2−x]O4 for 0 x 0.35 and Fe3+[Fe2+Fe3+x−1V3+2−x]O4 for 1 x 2 and the ionic valence arrangement changes from the 2-3-3 type (Fe2+[Fe3+xV3+2−x]O4) to the 3-2-3 one (Fe3+[Fe2+V3+]O4) in the range 0.35 x 1. Fe2VO4 is found to be 3-2-3 spinel, Fe3+[Fe2+V3+]O4. Its paramagnetic spectrum at 473°K is, however, composed of a broad single line with isomer shift value of 0.61 mm/sec relative to stainless steel, in which the line splitting due to the ferric and ferrous ions is rendered indistinguishable.  相似文献   

5.
V4O7 has a transition with decreasing temperature at 250 K and the structure has been refined at 298 and 200 K. The triclinic structure (A1) consists of rutile-like layers of VO6 octahedra extending indefinitely in the a-b plane and four octahedra thick along the c-axis. The average VO distances for the four independent V atoms are 1.967, 1.980, 1.969, and 1.984 Å at 298K and 1.948, 1.992. 1.961, and 2.009 Å at 200K. At 200K there is a clear separation into strings of V3+ or V4+ ions running parallel to the pseudorutile c-axis. In addition, all of the 3+ and half of the 4+ sites are paired to form short VV bonds. The remaining V4+ atom is displaced toward one oxygen so as to balance its electrostatic charge. The distortion at the metal-insulator transitions in V4O7, Ti4O7, VO2 + Cr, and NbO2 are compared.  相似文献   

6.
Application of EPR spectroscopy corroborated by spectra simulation in speciation studies of the tetravalent vanadium in supported VO x /ZrO2 catalyst has been discussed. Implementation of genetic algorithms into automated analysis of the EPR spectra has greatly improved the simulation efficiency. The performance of the new procedure has been benchmarked against common simplex method using the multi-component model and real EPR spectra of tetravalent vanadium in VO x /ZrO2 catalysts. The analysis has revealed speciation of vanadium into surface isolated and clustered vanadyl entities and isolated bulk V Zr x ions due to formation of Zr1?x V x O2 solid solution in the near to surface region. The structural heterogeneity of vanadium can be controlled by the calcination temperature and the redox treatment.  相似文献   

7.
EPR studies were carried out in (30 - x) Li2O-xK2O-10CdO-59B2O3-1MnO2 multi-component glass system to understand the effect of the variation in the alkali ratios on the EPR parameters. The observed EPR spectra of Mn2+ ion exhibits resonances at g = 2.0, 3.3 and 4.3. The resonance at g = 2.0 is due to Mn2+ ions in an environment close to the octahedral symmetry, where as the resonances at g = 3.3 & 4.3 are due to the rhombic surroundings of Mn2+ ions. Hyperfine splitting constant values at g = 2.0 and number of paramagnetic centers & paramagnetic susceptibility at different observed resonances were evaluated. These parameters show non linear variation with progressive substitution of Li+ ion with K+ ions may be due to the changes in cation field strengths and local structural variation due to the variation in mixed alkali ion ratios.  相似文献   

8.
Paramagnetic defects in α-WxV2O5 have been studied by ESR. A model is proposed where the unpaired electron arising from a valence induction effect remains localized on a single vanadium ion near the W6+ along the b direction. Introducing W6+ leads to a lattice distortion which is more important than that in the case of Mo6+. A slight displacement of vanadium along the a direction is observed in the defect, V4+ showing a stronger tendency toward octahedral coordination than V5+.  相似文献   

9.
Two ranges of solid solutions were prepared in the system Li4SiO4Li3VO4: Li4?xSi1?xVxO4, 0 < x ? 0.37 with the Li4SiO4 structure and Li3+yV1?ySiyO4, 0.18 ? y ? 0.53 with a γ structure. The conductivity of both solid solutions is much higher than that of the end members and passes through a maximum at ~40Li4SiO4 · 60Li3VO4 with values of ~1 × 10?5 ohm?1 cm?1 at 20°C, rising to ~4 × 10?2 ohm?1 cm?1 at 300°C. These conductivities are several times higher than in the corresponding Li4SiO4Li3(P,As)O4 systems, especially at room temperature. The solid solutions are easy to prepare, are stable in air, and maintain their conductivity with time. The mechanism of conduction is discussed in terms of the random-walk equation for conductivity and the significance of the term c(1 ? c) in the preexponential factor is assessed. Data for the three systems Li4SiO4Li3YO4 (Y = P, As. V) are compared.  相似文献   

10.
The range of chemical flexibilities of the hexagonal frameworks (Ta6Si4O26)6? and (Ta14Si4O47)8? have been partially explored. This has been done with high-temperature preparations as in general ionic mobilities in these frameworks are too low to permit low-temperature ion exchange. Ionic site potential calculations indicate that preferential site-occupancy factors as well as geometric constraints are responsible for the absence of ionic motion. New phases K6?xNaxTa6Si4O26 (x ? 4), K8?xNaxTa14Si4O47 (x ? 5), and impure Ba3?xNa2xTa6Si4O26 have been prepared. Introduction of up to 2 moles of Li+ and 1 mole of Mg2+ ions per formula unit into sites of the framework not normally occupied has been demonstrated as well as the possibility of partially substituting Zr4+ for Ta5+ ions. Substitutions designed to introduce large tunnel vacancies in the presence of only monovalent K+ or Na+ ions (P for Si, W for Ta and F for O) generally proved unsuccessful. Competitive phases also frustrated attempts to substitute either the larger Rb+ or the smaller Li+ ions into the large-tunnel sites. A large area of solid solution was discovered in the BaONa2OTa2O5 phase diagram; it has a (TaO3)-framework with the structure of tetragonal potassium tungsten bronze.  相似文献   

11.
The new complex oxide Na2SrV3O9 was synthesized and investigated by means of X-ray diffraction, electron microscopy and magnetic susceptibility measurements. This oxide has a monoclinic unit cell with parameters a=5.416(1) Å, b=15.040(3) Å, c=10.051(2) Å, β=97.03(3)°, space group P21/c and Z=4. The crystal structure of Na2SrV3O9, as determined from X-ray single-crystal data, is built up from isolated chains formed by square V4+O5 pyramids. Neighboring pyramids are linked by two bridging V5+O4 tetrahedra sharing a corner with each pyramid. The Na and Sr atoms are situated between the chains. Electron diffraction and HREM investigations confirmed the crystal structure. The temperature dependence of the susceptibility indicates low-dimensional magnetic behavior with a sizeable strength of the magnetic intra-chain exchange J of the order of 80 K, which is very likely due to superexchange through the two VO4 tetrahedra linking the magnetic V4+ cations.  相似文献   

12.
A new bronze-type phase of composition (NH4)0.40±0.02V2O5 is obtained around 230°C during the thermal decomposition of NH4VO3 in hydrogen atmosphere. The bronze intermediate is characterized by X-ray diffraction, electrical conductivity, magnetic susceptibility, and ESR studies. It is found to be isostructural with other known β-type vanadium bronzes of general formula MxV2O5, where M is usually a monovalent metal. Electrical conductivity and magnetic studies indicate the localized character of conduction electrons at V+4 sites. At high temperatures (>400°C), the bronze undergoes decomposition and subsequent reduction to V2O3 in hydrogen atmosphere.  相似文献   

13.
The electronic and physical properties of Cu2.33V4O11 were characterized by electrical resistivity, magnetic susceptibility and X-ray photoelectron spectroscopy (XPS) measurements and by tight-binding electronic band structure calculations. Attempts to prepare Cu2.33−xV4O11 outside its narrow homogeneity range led to a mixture of Cu2.33V4O11, CuVO3 and β-CuxV2O5. The magnetic susceptibility data show no evidence for a magnetic/structural transition around 300 K. The XPS spectra of Cu2.33V4O11 reveal the presence of mixed valence in both Cu and V. The [Cu+]/[Cu2+] ratio is estimated to be 1.11 from the Cu 2p3/2 peak areas, so [V4+]/[V5+]=0.56 by the charge balance. Our electronic structure calculations suggest that the oxidation state of the Cu ions is +2 in the channels of CuO4 tetrahedra, and +1 in the channels of linear CuO2 and trigonal planar CuO3 units. This predicts that [Cu+]/[Cu2+]=1.33 and [V4+]/[V5+]=0.50, in good agreement with those deduced from the XPS study.  相似文献   

14.
X-band and high-frequency EPR spectroscopy were used for studying the manganese environment in layered Li[MgxNi0.5−xMn0.5]O2, 0?x?0.5. Both layered LiMg0.5Mn0.5O2 and monoclinic Li[Li1/3Mn2/3]O2 oxides (containing Mn4+ ions only) were used as EPR standards. The EPR study was extended to the Ni-substituted analogues, where both Ni2+ and Mn4+ are paramagnetic. For LiMg0.5−xNixMn0.5O2 and Li[Li(1−2x)/3NixMn(2−x)/3]O2, an EPR response from Mn4+ ions only was detected, while the Ni2+ ions remained EPR silent in the frequency range of 9.23-285 GHz. For the diamagnetically diluted oxides, LiMg0.25Ni0.25Mn0.5O2 and Li[Li0.10Ni0.35Mn0.55]O2, two types of Mn4+ ions located in a mixed (Mn-Ni-Li)-environment and in a Ni-Mn environment, respectively, were registered by high-field experiments. In the X-band, comparative analysis of the EPR line width of Mn4+ ions permits to extract the composition of the first coordination sphere of Mn in layered LiMg0.5−xNixMn0.5O2 (0?x?0.5) and Li[Li(1−2x)/3NixMn(2−x)/3]O2 (x>0.2). It was shown that a fraction of Mn4+ are in an environment resembling the ordered “α,β”-type arrangement in Li1−δ1Niδ1[Li(1−2x)/3+δ1Ni2x/3−δ1)α(Mn(2−x)/3Nix/3)β]O2 (where and δ1=0.06 were calculated), while the rest of Mn4+ are in the Ni,Mn-environment corresponding to the Li1−δ2Niδ2[Ni1−yMny]O2 () composition with a statistical Ni,Mn distribution. For Li[Li(1−2x)/3NixMn(2−x)/3]O2 with x?0.2, IR spectroscopy indicated that the ordered α,β-type arrangement is retained upon Ni introduction into monoclinic Li[Li1/3Mn2/3]O2.  相似文献   

15.
EPR spectra of VO2+ ions doped in single crystals of Cs2Co(SO4)2.6H2O single crystals have been studied at various temperatures (390–103 K) on X-band frequency. The detailed EPR analysis shows three vanadyl complexes with differing intensities. The g and A tensors are found to be axially symmetric. The intense vanadyl complexes in the lattice are found to occupy the Co2+ substitutional sites, whereas the weak vanadyl complex at the interstitial sites. The optical absorption spectrum at room temperature shows three absorption bands characteristic of VO2+ ions in tetragonal symmetry. By correlating the EPR and optical data, the molecular bonding coefficients and the Fermi contact interaction terms have been evaluated and discussed. The line broadening of VO2+ spectra on cooling the crystal is explained on the basis of spin-lattice relaxation narrowing. The spin-lattice relaxation time for the host Co2+ ions has been estimated at various temperatures.  相似文献   

16.
Glasses with compositions xNb2O5·(30 ? x)M2O·69B2O3 (where M = Li, Na, K; x = 0, 4, 8 mol%) doped with 1 mol% V2O5 have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400–4000 cm?1. The changes caused by the addition of Nb2O5 on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO2+ ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V4+ ions which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V4+O6 complex decreases with increasing concentration of Nb2O5. The 3dxy orbit contracts with increase in Nb2O5:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported.  相似文献   

17.
The V2O5+MoO3 system has been examined by a stripping voltammetry technique using a carbon paste electroactive electrode and EPR. The feasibility of establishing the phase composition and the capability oxygen chemisorption has been demonstrated. The processes of electrochemical transformations of the substances to be investigated and of chemisorbed oxygen appearing on their surface as a result of electrochemical water oxidation serve as sources of information. The cathodic signal spectrum of chemisorbed oxygen anables its energetic inhomogeneity to be estimated, while the difference in potentials of the corresponding cathodic and anodic currents, its lability. It has been established that in the system investigated the dominant role in processes of oxygen chemisorption is played by the V4+ surface centres. A model of defect formation in solid solution (MoxV1-x)2O5 is discussed.  相似文献   

18.
The magnetic and electric properties of V2O3+x were investigated by measurements of magnetic susceptibility, electrical resistivity, magnetotorque, Mössbauer of doped 57Fe, and NMR of 51V, and the results were compared with those of the (V1?xTix)2O3 system or highly pressured V2O3. The results obtained are as follows: (1) The metallic state shows an antiferromagnetic ordering at TN (x). The value of TN for metallic V2O3, obtained by interpolation to x = 0, shows the coincidence between V2O3+x and the (V1?xTix)2O3 system. (2) Magnetic susceptibility of V2O3+x is expressed as χM(V2O3+x) = (1?x)χM(V3+) + M(V4+). χM(V4+) obeys the Curie-Weiss law M(V4+) = 0.77T + 17). (3) In the insulating phase, the electrical resistivity ? is expressed as a common equation: ? = 10?1.8exp(EkT). This implies that the substitution of Ti or nonstoichiometry (V+4 + metal vacancies) has little influence on the carrier mobility (or bandwidth). (4) There is a critical length in the c-axis (? 14.01 Å) where the metal-insulator transition takes place. This suggests that the length of the c-axis plays an important role in the metal-insulator transition of V2O3-related compounds.  相似文献   

19.
The effect of VO2+ ions on the composition and kinetics of calcium polyvanadate precipitation from solutions with 1.5 ≤ pH ≤ 9 at 80–90°C has been studied. For 1,5 ≤ pH < 3 and V4+/V5+ = 0.11–9, the precipitated compounds have the general formula Ca x V y 4+ V 12?y 5+ O31?δ · nH2O (0.8 ≤ x ≤ 1.06, 2 ≤ y ≤ 3, 0.94 ≤ δ ≤ 1.5). The maximum vanadium(IV) proportion (y = 3) in the precipitates is achieved when V4+/V5+ = 0.5?1.0 in the solution and pH is 3. Polyvanadate precipitation at pH 1.7 has a long induction period (up to 30 min), which is not observed for V4+/V5+ > 0.1. Precipitation in solutions with pH 3 occurs only when VO2+ ions are added, with a maximum rate near V4+/V5+ = 0.2 and in presence of chloride ions. The processes are controlled by a secondorder reaction on the polyvanadate surface.  相似文献   

20.
The potential insertion-electrode compounds Na1.2[V3O8] (NaV) and Na0.7Li0.7[V3O8] (NaLiV) were synthesized from mixtures of Na2CO3, Li2CO3 and V2O5, which were melted at 750° and subsequently cooled to room temperature. The structures of NaV and LiV contain sheets of polymerized (VOn) polyhedra, which are topologically identical to the sheet of polymerized polyhedra in Li1.2[V3O8] (LiV). Vanadium occurs in three different coordination environments: [2+3] V(1), [2+2+2] V(2) and [1+4+1] V(3). Calculated bond-valence sums indicate that V4+ occurs preferentially at the V(3) site, which agrees with the general observation that [6]-coordinated V4+ prefers [1+4+1]-rather than [2+2+2]-coordination. The M-cations Na and Li occur at three distinct sites, M(1), M(2) and M(3) between the vanadate sheets. The M(1)-site is fully occupied and has octahedral coordination. The M(2) sites are partly occupied in NaV and NaLiV, in which they occur in [4]- and [6]-coordination, respectively. Li partly occupies the M(3) site in NaLiV, in which it occurs in [3]-coordination. The M(2) and M(3) sites in NaLiV occur closer to the vanadate sheets than the M(2) sites in NaV and LiV. The shift in these cation positions is a result of the larger distance between the vanadate sheets in NaLiV than in LiV, which forces interstitial Li to move toward one of the vanadate sheets to satisfy its coordination requirements. Bond-valence maps for the interstitial cations Na and Li are presented for NaV, NaLiV and LiV. These maps are used to determine other potential cation positions in the interlayer and to map the regions of the structure where the Na and Li have their bond-valence requirements satisfied. These regions are potential pathways for Na and Li diffusion in these structures, and are used to explain chemical diffusion properties of Na and Li in the Na-Li-[V3O8] compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号