首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new ammonium indium phosphate (NH4)In(OH)PO4 was prepared by hydrothermal reaction in the In2O3-NH4H2PO4-NH3/OH system (T=200°C, autogenous pressure, 7 days). The formula (NH4)In(OH)PO4 was determined on the basis of chemical and thermal analysis (TG/DSC), X-ray powder diffraction and IR-spectroscopy. (NH4)In(OH)PO4 crystallizes in the tetragonal system with space group P43212 (No. 96); a=9.4232(1) Å, c=11.1766(1) Å, V=992.45(2) Å3; Z=8. The crystal structure was refined by the Rietveld method (Rw=6.35%, Rp=5.10%). The second-harmonic generation study confirmed that structure of (NH4)In(OH)PO4 does not have a center of symmetry. The cis-InO4(OH)2 octahedra form helical chains, parallel to the c-axis. The In-O-In bonds are nearly equidistant. The chains are interconnected by phosphate tetrahedra and create tunnels containing the NH4+ ions along the c-axis. (NH4)In(OH)PO4 is isostructural with RbIn(OH)PO4.  相似文献   

2.
The double sodium and iron phosphate Na3Fe(PO4)2 was synthesized and studied by the XRD method, the second harmonic generation technique, and Mössbauer and IR spectroscopy. The compound crystallizes into a monoclinic system (space group C2/c) with unit cell parameters a=9.0736(2) Å, b=5.0344(1) Å, c=13.8732(3) Å, β=91.435(2)° and is found to be related to the K3Na(SO4)2 structure type. The crystal structure was determined by Rietveld analysis (Rwp=5.86, RI=2.03). Iron cations occupy the M (Na) position while sodium cations occupy the X (K) and Y (K) positions of the glaserite-like structure. Mössbauer spectroscopy shows the presence of high-spin Fe3+ in octahedral coordination.  相似文献   

3.
Two new isostructural rare earth phosphates Na7Mg13Ln(PO4)12 (Ln=La, Eu) have been synthesized and investigated by X-ray diffraction and optical measurements. They crystallize in the orthorhombic system with the Cmc21 space group (Z=4). The crystal structure exhibits a new type of framework built up from LnO8 (Ln=La, Eu), MO6 (M=0.5Mg+0.5Na) and MgOx (x=5, 6) polyhedra and PO4 tetrahedra linked by common corner, edge or face. It can be described in terms of [Mg4MP4O22] layers stacked along the a direction. These layers are interconnected by [Mg4LnP4O36] undulating chains spreading along the b direction. This framework delimits 6 distinct cavities occupied by Na+ cations. The results of the optical study of Na7Mg13La1−xEux(PO4)12 (x=0, 0.02, 0.1, 1) reveal the presence of two different Eu3+ ion environments whereas the X-ray study predicts the existence of only one Eu site. This difference can be explained by the possible presence of the europium element in the sodium sites with small occupancies which cannot be detected by the X-ray structural determination.  相似文献   

4.
An ammonium indium hydrogen phosphate, NH4In(OH)PO4, was synthesized under mild hydrothermal conditions, and the crystal structure was characterized by single-crystal X-ray diffraction method. The compound crystallizes with the RbIn(OH)PO4 type with the following data: Mr=244.84, tetragonal, tP104, P43212 (No.96), a=9.416(2) Å, c=11.159(3) Å, V=989.9(3) Å3, Z=8, Dx=3.288 g cm−3, λ=0.71073 Å, μ=50.34 cm−1, F(000)=928, T=293 K, R1=0.0606, wR2=0.1472 for 91 variables and 1813 contributing unique reflections. The structure is characterized by chiral InO4(OH)2 chains along the c axis formed by sharing OH corners. The chains are isolated by PO4 tetrahedra leading to a three-dimensional framework structure with channels occupied by NH4+ ions. The framework structure is similar to that of KIn(OH)PO4 and γ-NaTiOPO4. The hydrogen bonds formed by NH4+ with the polyhedral oxygen atoms play an important role in the anisotropic changes of the lattice with respect to its alkali metal analogues. The topological construction of the title structure can be considered as an augmented 4,6-net with larger porosity.  相似文献   

5.
The crystal structure of La0.63(Ti0.92,Nb0.08)O3 has been refined by the Rietveld analysis of Cu X-ray powder diffraction data collected at 23°C. This material was confirmed to have an A-site deficient orthorhombic perovskite-type structure with double ideal perovskite ABO3 units along the c-axis (space group Pmmm, Z=2, a=3.86036(5) Å, b=3.87222(5) Å, c=7.82609(9) Å). Lattice parameters of the same sample have been investigated in situ in the temperature range from 25°C to 496°C by 1.37873(3) Å synchrotron X-ray powder diffraction. The synchrotron X-ray powder diffraction technique was found to be very powerful to determine precise lattice parameters around a phase transition temperature. This compound exhibited a reversible phase transition between the orthorhombic and tetragonal phases at around 370°C. (1) The lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point. (2) No hysteresis was observed in the lattice parameter values between heating and cooling. These results of (1) and (2) suggest that the orthorhombic-tetragonal phase transition is continuous.  相似文献   

6.
The calcium mixed phosphate Ca8P2O7(PO4)4 has been synthesized by thermal decomposition of octacalcium phosphate previously prepared by precipitation in ammoniacal phosphate solution. The enthalpy of formation at 298.15 K referenced to β-tricalcium phosphate and calcium pyrophosphate is determined. β-Tricalcium phosphate was prepared by two methods: precipitation in ammoniacal aqueous medium and high temperature solid-state reaction. Calcium pyrophosphate was prepared by high temperature solid-state reaction. All the compounds are characterized by chemical analysis, X-rays diffraction and IR spectroscopy. The enthalpy of formation +10.83 ± 0.63 kJ mol−1 is obtained by solution calorimetry at 298.15 K in nitric acid.  相似文献   

7.
Crystal structure and phase transformations of calcium yttrium orthophosphate Ca3Y(PO4)3 were investigated by X-ray powder diffraction, selected-area electron diffraction, transmission electron microscopy and optical microscopy. The high-temperature phase is isostructural with eulytite, cubic (space group ) with a=0.983320(5) nm, V=0.950790(8) nm3, Z=4 and Dx=3.45 Mg m−3. The crystal structure was refined with a split-atom model, in which the oxygen atoms are distributed over two partially occupied sites. Below the stable temperature range of eulytite, the crystal underwent a martensitic transformation, which is accompanied by the formation of platelike surface reliefs. The inverted crystal is triclinic (space group P1) with a=1.5726(1) nm, b=0.84267(9) nm, c=0.81244(8) nm, α=109.739(4)°, β=90.119(5)°, γ=89.908(7)°, V=1.0134(1) nm3, Z=4 and Dx=3.24 Mg m−3. The crystal grains were composed of pseudo-merohedral twins. The adjacent twin domains were related by the pseudo-symmetry mirror planes parallel to with the composition surface . When the eulytite was cooled relatively slowly from the stable temperature range, the decomposition reaction of Ca3Y(PO4)3β-Ca3(PO4)2+YPO4 occurred.  相似文献   

8.
The single crystals of caesium magnesium titanium (IV) tri-oxo-tetrakis-diphosphate bis-monophosphate, Cs3.70Mg0.60Ti2.78(TiO)3(P2O7)4(PO4)2, crystallize in sp. gr. P-1 (No. 2) with cell parameters a=6.3245(4), b=9.5470(4), c=15.1892(9) Å, α=72.760(4), β=85.689(5), γ=73.717(4), z=1. The titled compound possesses a three-dimensional tunnel structure built by the corner-sharing of distorted [TiO6] octahedra, [Ti2O11] bioctahedra, [PO4] monophosphate and [P2O7] pyrophosphate groups. The Cs+ cations are located in the tunnels. The partial substitution of Ti positions with Mg atoms is observed. The negative charge of the framework is balanced by Cs cations and Mg atoms leading to pronounced concurrency and orientation disorder in the [P2O7] groups, which coordinate both.  相似文献   

9.
The subsolidus phase diagram, CaO-Al2O3-CoO, and its phase relations below 1300°C have been studied in air. The stability regions of nine subsolidus compatibility triangles were established and a new ternary phase was found. The structure of this compound, Ca3CoAl4O10 (orthorhombic, space group Pbc21, a=5.1452(2) Å, b=16.7731(5) Å, c=10.7055(3) Å), was determined from X-ray diffraction data and found to be isostructural with Ca3ZnAl4O10. This is an open framework compound with three crystallographically different channels, each with a diameter of ∼3.5 Å. The two end members of the binary CoO-CaO system are surrounded by small regions of solid solutions. Lab color parameters were measured in several compositions. No ternary phases were found when Co was substituted by other divalent cations such as Sr, Ba, Mn, Ni, Cu, Cd, Sn and Pb.  相似文献   

10.
Crystallization from a ThBr4/DMSO/(Et4N)2Mo3S7Br6 mixture in benzonitrile gave [Th2(µ-SO4)2×(DMSO)12]{[Mo3S7Br5(DMSO)]Br}2·2DMSO·PhCN. The complex has an ionic structure. In the [Th2(µ-SO4)2(DMSO)12]4+ centrosymmetric binuclear cation, the metal atoms are bound by two sulfate bridges and are coordinated by DMSO oxygen atoms, the coordination polyhedron of thorium(IV) being a tricapped trigonal prism (c.n. 9). The [Mo3S7Br5(DMSO)]cluster anion and the bromide ion form an ion pair with Sax...Br short contacts, and the DMSO molecule is coordinated to one of the molybdenum atoms via the oxygen atom. The voids of the structure are filled with DMSO and PhCN solvate molecules, the latter being disordered over two positions related by an inversion center.Original Russian Text Copyright © 2004 by M. N. Sokolov, O. A. Gerasko, S. F. Solodovnikov, and V. P. FedinTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 516–521, May–June 2004.  相似文献   

11.
A complete series of solid solutions was prepared in the SrZr(PO4)2-BaZr(PO4)2 system and examined by conventional X-ray powder diffraction (XRPD). The crystals of SrxBa1−xZr(PO4)2 with x?0.1 were isomorphous with yavapaiite (KFe(SO4)2, space group C2/m). The solid solution with 0.2?x?0.7 has been composed of a new phase, showing a superstructure along the a-axis (c-axis of the yavapaiite substructure). The crystals with 0.8?x?0.9 were composed of both the new phase and the triclinic phase, the latter being isostructural with SrZr(PO4)2 (x=1). The crystal structure of the new phase has been determined using direct methods, and it has been further refined by the Rietveld method. The crystal of Sr0.7Ba0.3Zr(PO4)2 (x=0.7) is monoclinic (space group P2/c, Z=4 and Dx/Mg m−3=3.73) with a=1.53370(8) nm, b=0.52991(3) nm, c=0.84132(4) nm, β=92.278(1)° and V=0.68321(6) nm3. Final reliability indices are Rwp=7.32%, Rp=5.60% and RB=3.22%. The powder specimen was also examined by high-temperature XRPD and differential thermal analysis (DTA) to reveal the occurrence of two phase transitions during heating; the space group changed from P2/c to C2/m at ∼400 K, followed by the monoclinic-to-hexagonal (or trigonal) transition at 1060 K. The P2/c-to-C2/m transition has been, for the first time, described in the yavapaiite-type compounds.  相似文献   

12.
The double phosphate Ca9Eu(PO4)7, obtained by solid state reaction, was found to be isotypic with Ca3(PO4)2, with space group R3c and unit cell parameters a=10.4546(1) Å, c=37.4050(3) Å, V=3540.67(9) Å3, Z=6. The structure parameters refined using the Rietveld method showed that europium shares positions M1, M2 and M3 with calcium, contradicting previously published Mössbauer results. Low temperature luminescence under selective excitation of Eu3+ in Ca9Y1−xEux(PO4)7 and in Ca9Eu(PO4)7 samples was studied, confirming the Eu3+ distribution into these sites. At 10 K, 5D07F0 emission lines of Eu3+ were observed at 578.5, 579.5, 580.1 nm for the M3, M1 and M2 sites, respectively. High temperature X-ray powder diffraction evidenced a second-order phase transition around 573 °C.  相似文献   

13.
A new cesium gallophosphate, CsGa2(OH)2[(PO4)H(PO4)], with an original layer structure has been synthesized by hydrothermal route and characterized by single-crystal X-ray diffraction (R=0.0344, Rw=0.0319). Its structure crystallizes in the monoclinic space group P21/a with cell parameters , , , β=93.36(4)° and Z=2. It consists of [Ga(OH)PO4] layers built up of rutile ribbons interconnected through PO4 tetrahedra. The structure of CsGa2(OH)2[(PO4)H(PO4)] is closely related to those of (NH4)Ga(OH)PO4 and (en)Ga2(OH)2(PO4)2 (en=ethylenediamine [H3N(CH2)2NH3]2+). The three structures differ mainly from each other by the relative positions and the spacing of the successive layers, which are governed by different hydrogen bonding modes between [Ga(OH)PO4] layers and the interleaved species. The title compound presents strong symmetric hydrogen bonds O---H---O which bridge two PO4 tetrahedra of two successive layers. As a consequence, the distance between the layers is significantly shorter than in the two other amine compounds.  相似文献   

14.
Crystal structures of synthetic phosphates Ce0.33Zr2(PO4)3, Eu0.33Zr2(PO4)3 and Yb0.33Zr2(PO4)3 have been refined by Rietveld method using powder diffraction data. Unit cell parameters: a=8.7419 (4), c=23.128 (2) Å; a=8.7659 (1), c=22.822 (1) Å; a=8.8078 (4), c=22.485 (3) Å, respectively; Z=6. Values of final R-factors in isotropic approximation: Rwp=4.00, Rwp=3.33, Rwp=4.12%, respectively. New space group Pc has been established for the compounds with general formula Ln0.33Zr2(PO4)3, where Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. It has been confirmed that the synthetic phosphates with general formula Ln0.33Zr2(PO4)3 belong to the NZP (sodium zirconium phosphate) structure type.  相似文献   

15.
The crystal structure and photoluminescent properties of europium doped silicate Sr2Y8(SiO4)6O2:Eu3+ are reported. The Sr2Y8−xEux(SiO4)6O2 compounds have typical apatite crystal structures with the P63/m space group. The distributions of Eu3+ between the two crystallographic sites 4f and 6h in the apatite structure are investigated by the powder X-ray diffraction and Rietveld refinement. Results show that Eu3+ ions only occupy the 4f sites when the Eu doping concentration is low (x=0-0.5 in Sr2Y8−xEux(SiO4)6O2). However, in higher concentrations, Eu3+ ions begin to enter the 6h sites as well. The distributions of the Eu3+ are also reflected in photoluminescent spectra. The CIE coordinates for Sr2Y6Eu2(SiO4)6O2 are (0.63, 0.37), which is close to the pure red color.  相似文献   

16.
By replacing Mn in YCa3(MnO)3(BO3)4 with trivalent Al and Ga, two new borates with the compositions of YCa3(MO)3(BO3)4 (M=Al, Ga) were prepared by solid-state reaction. Structure refinements from X-ray powder diffraction data revealed that both of them are isostructural to gaudefroyite with a hexagonal space group P63/m. Cell parameters of a=10.38775(13)Å, c=5.69198(10)Å for the Al-containing compound and a=10.5167(3)Å, c=5.8146(2)Å for the Ga analog were obtained from the refinements. The structure is constituted of AlO6 or GaO6 octahedral chains interconnected by BO3 groups in the ab plane to form a Kagomé-type lattice, leaving trigonal and apatite-like tunnels. It is found that most rare-earth and Cr, Mn ions can be substituted into the Y3+ and M3+ sites, respectively, and the preference of rare-earth ions to locate in the trigonal tunnel is correlated to the sizes of the M3+ ions.  相似文献   

17.
A new sodium gallophosphate, NaGa2(OH)(PO4)2, has been obtained by hydrothermal synthesis under autogeneous pressure at 473 K. It crystallizes in the P21/n space group with the cell parameters a=8.9675(8) Å, b=8.9732(5) Å, c=9.2855(7) Å, β=114.812(6)°, V=678.2 Å3 (Z=4). In its original three-dimensional framework, monophosphate groups share their apices with [Ga4O16(OH)2] tetrameric units, which are built from two GaO5(OH) octahedra and two GaO4(OH) trigonal bipyramids. The sodium cations are located in tunnels running along a, whereas the tunnels running along b are empty.  相似文献   

18.
Crystal structure and structural disorder of (Ba0.65Ca0.35)2SiO4 were investigated by laboratory X-ray powder diffraction (CuKα1). The initial structural model with eleven independent atoms in the unit cell was determined using direct methods, and it was further modified to a split-atom model, in which the two types of Ba/Ca atoms and two types of SiO4 tetrahedra were, respectively, positionally and orientationally disordered. The crystal structure is trigonal (space group , Z=4) with lattice dimensions a=0.57505(1) nm, c=1.46706(2) nm and V=0.42014(1) nm3. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The final reliability indices calculated from the MPF were Rwp=9.56% (S=1.48), Rp=7.29%, RB=1.82% and RF=0.88%. This compound is most probably homeotypic to glaserite.  相似文献   

19.
SnP2O7 is a member of the ZrP2O7 family of materials, several of which show unusual thermal expansion behavior over certain temperature ranges and which show a number of displacive phase transitions on cooling from high temperature. Here we describe the structural properties of SnP2O7 from 100 to 1243 K as determined by X-ray and neutron powder diffraction. These studies reveal that SnP2O7 shows two phase transitions in this temperature range. At room temperature the material has a pseudo-cubic 3×3×3× superstructure. Electron diffraction studies show that the symmetry of this structure is P213 or lower. On warming to ∼560 K it undergoes a phase transition to a structure in which the subcell reflections show a triclinic distortion; above 830 K the subcell reflections show a rhombohedral distortion. Significant hysteresis in cell parameters is observed between heating and cooling. The structure of SnP2O7 is discussed with references to other members of the AM2O7 family of materials.  相似文献   

20.
Polymorphous modifications (γ-, β- and α-) of the double potassium ytterbium molybdenum oxide K5Yb(MoO4)4 were synthesized by the solid-state method and their structures were studied by X-ray powder diffraction, electron diffraction and high-resolution electron microscopy. DSC analysis shows that the γ→β↔α phase transitions are not accompanied with a significant reconstruction of the palmierite-type structure. All modifications of K5Yb(MoO4)4 are related to the mineral palmierite—K2Pb(SO4)2. The palmierite-type structure is made up of isolated AO4 tetrahedra, which connect the MOn polyhedra into a 3-D framework via common vertices. Cations occupy two crystallographic positions M1 and M2. The γ-phase crystallizes in a monoclinic system (space group C2/c) with unit-cell parameters: a=14.8236(1) Å, b=12.1293(1) Å, c=10.5151(1) Å, β=114.559(1)°, Z=4. The α-phase has space group with unit-cell parameters: a=6.0372(1) Å, c=20.4045(2) Å. The structures of the γ- and α-modification were refined by the Rietveld method (Rwp=6.25%, RI=2.16% and Rwp=9.09%, RI=5.80% for γ- and α-, respectively). In K5Yb(MoO4)4 ytterbium cations occupy M1 while K+ cations occupy M2 and M1 positions of the palmierite-type structure. In the high-temperature (α-) modification the Yb3+ and K+ occupy the M1 site in a statistical manner (M1=0.5Yb3++0.5K+) while in the low-temperature (γ-) modification these cations occupy this site in an ordered way. The intermediate β-phase shows an incommensurate modulated structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号