首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel three-dimensional compound of Na4Sb12Mo5O35 has been synthesized by hydrothermal methods and structurally characterized by X-ray crystallography. It crystallizes in the triclinic system space group with , , , α=94.59(3)°, β=112.68(3)°, γ=92.97(3)°, , Z=2, R1=0.0275, wR2=0.0984 for 7364 unique reflections with I>2σ(I). The molecular structure is built up of Mo6O21, MoO4 units, and cage-like units that contain 12 Sb atoms. IR, UV-Vis DRIS (Ultraviolet-Visible Diffuse Reflection Integral Spectrum), fluorescent spectra, and the thermogravimetric analysis of this compound were investigated.  相似文献   

2.
3.
4.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

5.
6.
7.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

8.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   

9.
The new compound K2CuSbS3 has been synthesized by the reaction of K2S, Cu, Sb, and S at 823 K. The compound crystallizes in the Na2CuSbS3 structure type with four formula units in space group P21/c of the monoclinic system in a cell at 153 K of a=6.2712 (6) Å, b=17.947 (2) Å, c=7.4901 (8) Å, β=120.573 (1)°, and V=725.81 (12) Å3. The structure contains two-dimensional layers separated by K atoms. Each layer is built from CuS3 and SbS3 units. Each Cu atom is pyramidally coordinated to three S atoms with the Cu atom about 0.4 Å above the plane of the S atoms. Each Sb atom is similarly coordinated to three S atoms but is about 1.1 Å above its S3 plane. First-principles calculations indicate an indirect band gap of 1.9 eV. These calculations also indicate that there is a bonding interaction between the Cu and Sb atoms. An optical absorption measurement performed with light perpendicular to the (0 1 0) crystal face of a red block-shaped crystal of K2CuSbS3 indicates an experimental indirect band gap of 2.2 eV.  相似文献   

10.
The single crystals of lanthanum metaphosphate MLa(PO3)4 (M=Na, Ag) have been synthesized and studied by a combination of X-ray crystal diffraction and vibrational spectroscopy. The sodium and silver compounds crystallize in the same monoclinic P21/n space group ( factor group) with the following respective unit cell dimensions: a=7.255(2), b=13.186(3), , β=90.40(2)°, , Z=4 and a=7.300(5), b=13.211(9), , β=90.47(4)°, , Z=4. This three-dimensional framework is built of twisted zig-zag chains running along a direction and made up of PO4 tetrahedra sharing two corners, connected to the LaO8 and NaO7 or AgO7 polyhedra by common oxygen atoms to the chains. The infrared and Raman vibrational spectra have been investigated. A group factor analysis leads to the determination of internal modes of (PO3) anion in the phosphate chain.  相似文献   

11.
We report the synthesis and crystal structure of the new compound Sr4PbPt4O11, containing platinum in highly unusual square pyramidal coordination. The crystals were obtained in molten lead oxide. The structure was solved by X-ray single crystal diffraction techniques on a twinned sample, the final R factors are R=0.0260 and wR=0.0262. The symmetry is triclinic, space group P1¯, with , , , α=90.421(3)°, β=89.773(8)°, γ=90.140(9)° and Z=2. The structure is built from dumbell-shaped Pt2O9 entities formed by a dinuclear metal-metal bonded Pt26+ ion with asymmetric environments of the two Pt atoms, classical PtO4 square plane and unusual PtO5 square pyramid. Successive Pt2O9 entities deduced from 90° rotations are connected through the oxygens of the PtO4 basal squares to form [Pt4O108−] columns further connected through Pb2+ and Sr2+ ions. Raman spectroscopy confirmed the peculiar platinum coordination environment.  相似文献   

12.
The compound CsAgSb4S7 has been synthesized by the reaction of the elements in a Cs2S3 flux at 773 K. The compound crystallizes in a new structure type with eight formula units in space group C2/c of the monoclinic system in a cell at 153 K of dimensions , , , β=97.650(1)°, and . The structure contains two-dimensional layers separated by Cs atoms. Each layer is built from edge-sharing one-dimensional and chains. Each Ag atom is tetrahedrally coordinated to four S atoms. Each Sb3+ center is pyramidally coordinated to three S atoms to form an SbS3 group. CsAgSb4S7 is insulating with an optical band gap of 2.04 eV. Extended Hückel calculations indicate that the band gap in CsAgSb4S7 is dominated by the Sb 5s and S 3p states above and below the Fermi level.  相似文献   

13.
The new vanadate BiMgVO5 has been prepared and its structure has been determined by single crystal X-ray diffraction: space group P21/n, , , , β=107.38(5)°, wR2=0.0447, R=0.0255. The structure consists of [Mg2O10] and [Bi2O10] dimers sharing their corners with [VO4] tetrahedra. The ranges of bond lengths are 2.129-2.814 Å for Bi-O; 2.035-2.167 Å for Mg-O and 1.684-1.745 Å for V-O. V-O bond lengths determined from Raman band wavenumbers are between 1.679 and 1.747 Å. An emission band overlapping the entire visible region with a maximum around 650 nm is observed.  相似文献   

14.
Ba3MgSi2O8, a phosphor host examined for use in white-light devices and plant-growth lamps, was synthesized at 1225 °C in air. Its crystal structure has been determined and refined by a combined powder X-ray and neutron Rietveld method (, Z=3, a=9.72411(3) Å, c=7.27647(3) Å, V=595.870(5) Å3; Rp/Rwp=3.79%/5.03%, χ2=4.20). Superstructure reflections, observed only in the neutron diffraction data, provided the means to establish the true unit cell and a chemically reasonable structure. The structure contains three crystallographically distinct Ba atoms—Ba1 resides in a distorted octahedral site with S6 () symmetry, Ba2 in a nine-coordinate site with C3 (3) symmetry, and Ba3 in a ten-coordinate site with C1 (1) symmetry. The Mg atoms occupy distorted octahedral sites, and the Si atom occupies a distorted tetrahedral site.  相似文献   

15.
A new heterometallic iodide, PbI4Cu2(PPh3)4, was synthesized by reactions of PbI2, CuI and triphenylphosphine (PPh3) in DMF solution. The single-crystal X-ray diffraction analyses show that Pb(II) center adopts an unusual cis-divacant octahedral geometry. Crystal data: triclinic, space group , , , , α=106.623(4)°, β=103.478(6)°, γ=93.574(5)°, and Z=2. Density function theory (DFT) calculations and fragment orbital interaction analyses reveal the presence of a three-center four-electron (3c-4e) hypervalent bonding about lead; and the formation of the unusual cis-divacant [PbI4]2− octahedron is energetically favorable. The title yellow compound has an optical bandgap of 2.69 eV and shows remarkable red-infrared fluorescence emission at 732 nm with lifetime of 24 μs which is assigned as an iodine 5p-lead 6s to PPh3-lead 6p charge transfer (XM-LM-CT).  相似文献   

16.
Two fluorinated metal phosphates, M2F2(2,2′-bpy)(HPO4)2(H2O) (M=Fe, Ga), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. The two compounds are isostructural and crystallize in the triclinic space group , a=7.6595(8)Å, b=10.101(1)Å, c=11.260(1)Å, α=107.555(2)°, β=105.174(2)°, γ=98.975(2)°, V=775.1(2)Å3 and Z=2 for the Fe compound, and a=7.5816(6)Å, b=9.9943(7)Å, c=11.1742(8)Å, α=107.333(1)°, β=105.014(1)°, γ=99.261(1)° and V=754.2(2)Å3 for the Ga compound. They are the first fluorinated metal phosphates which incorporate 2,2′-bipyridine ligands. The structure consists of edge-sharing octahedral dimers with the composition Fe2F4(H2O)2O4 and discrete FeN2O4 octahedra, which are linked into two-dimensional sheets through corner-sharing phosphate tetrahedra. The 2,2′-bpy ligands bind in a bidentate fashion to the metal atoms and project into interlamellar region. The layers are extended into a three-dimensional supramolecular array via π-π stacking interactions of the 2,2′-bpy ligands. Magnetic susceptibility of the iron compound confirms the presence of FeIII.  相似文献   

17.
Three manganese oxalates have been hydrothermally synthesized, and their structures determined by single-crystal X-ray diffraction. MnC2O4·2H2O (I) is orthorhombic, P212121, , , , , Z=4, final R, Rw=0.0832, 0.1017 for 561 observed data (I>3σ(I)). The one-dimensional structure consists of chains of oxalate-bridged manganese centers. [C4H8(NH2)2][Mn2(C2O4)3] (II) is triclinic, , , , , α=81.489(2)°, β=81.045(2)°, γ=86.076(2)°, , Z=1, final R, Rw=0.0467, 0.0596 for 1773 observed data (I > 3σ (I)). The three-dimensional framework is constructed from seven coordinate manganese and oxalate anions. The material contains extra-framework diprotonated piperazine cations. Mn2(C2O4)(OH)2 (III) is monoclinic, P21/c, , , , β=91.10(3)°, , Z=1, final R1, wR2=0.0710, 0.1378 for 268 observed data (I>2σ (I)). The structure is also three dimensional, with layers of MnO6 octahedra pillared by oxalate anions. The hydroxide group is found bonded to three manganese centers resulting in a four coordinate oxygen.  相似文献   

18.
Phase transitions in the elpasolite-type K3AlF6 complex fluoride were investigated using differential scanning calorimetry, electron diffraction and X-ray powder diffraction. Three phase transitions were identified with critical temperatures , and . The α-K3AlF6 phase is stable below T1 and crystallizes in a monoclinic unit cell with a=18.8588(2)Å, b=34.0278(2)Å, c=18.9231(1)Å, β=90.453(1)° (a=2accc, b=4bc, c=ac+2cc; ac, bc, cc—the basic lattice vectors of the face-centered cubic elpasolite structure) and space group I2/a or Ia. The intermediate β phase exists only in very narrow temperature interval between T1 and T2. The γ polymorph is stable in the T2<T<T3 temperature range and has an orthorhombic unit cell with a=36.1229(6)Å, b=17.1114(3)Å, c=12.0502(3)Å (a=3ac−3cc, b=2bc, c=ac+cc) at 250 °C and space group Fddd. Above T3 the cubic δ polymorph forms with ac=8.5786(4)Å at 400 °C and space group . The similarity between the K3AlF6 and K3MoO3F3 compounds is discussed.  相似文献   

19.
The crystal structures of NaK2B9O15 (, , , β=94.080(1)°, Rp=0.047, Rwp=0.059, RB=0.026), Na(Na.17K.83)2B9O15 (, , , β=94.228(2)°, Rp=0.053, Rwp=0.068, RB=0.026), and (Na.80K.20)K2B9O15 (, , , β=94.071(1)°, Z=4, Rp=0.041, Rwp=0.052, RB=0.023) were refined in the monoclinic space groups P21/c(Z=4) using X-ray powder diffraction data and the Rietveld method. These nonaborates are isostructural to K3B9O15. Their crystal structure consists of a three-dimensional open framework built up from three crystallographically independent triborate groups. The alkali metal cations are located on three different sites in the voids of the framework. High-temperature X-ray diffraction studies show that NaK2B9O15 decomposes at about 700 °C in accordance with the peritectic reaction NaK2B9O15↔K5B19O31+liquid. The thermal expansion of NaK2B9O15 and Na(Na.17K.83)2B9O15 is highly anisotropic. A similarity of the thermal and compositional (Na-K substitution) deformations of NaK2B9O15 is revealed: heating of NaK2B9O15 by 1 °C leads to the same deformations of the crystal structure as increasing the amount of K atoms in (Na1−xKx)3B9O15 by 0.04 at% K.  相似文献   

20.
A novel 3-D compound of (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)]·6.5H2O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with , , , β=112.419(3)°, , Z=8, R1=0.0463 and wR2=0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group CO2CONHCH2CH2NH3+, which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号