首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neutron scattering has been used to measure the charge and spin structure in the YBa2Cu3O6+x superconductors. Incommensurate static charge ordering is found at low doping levels while only charge fluctuations are found at higher doping. The spin structure is complex with both a commensurate resonance and incommensurate structure observed at low temperatures. The scattering results are used to construct a phase diagram for stripes in the YBa2Cu3O6+x system.  相似文献   

2.
We have investigated the evolution of the electronic properties of the t-t'-U Hubbard model with hole doping and temperature. Due to the shape of the Fermi surface, scattering from short wavelength spin fluctuations leads to strongly anisotropic quasi-particle scattering rates at low temperatures near half-filling. As a consequence, significant variations with momenta near the Fermi surface emerge for the spectral functions and the corresponding ARPES signals. At low doping the inverse lifetime of quasiparticles on the Fermi surface is of order varying linearly in temperature from energies of order t down to a very low energy scale set by the spin fluctuation frequency while at intermediate doping a sub-linear T-dependence is observed. This behavior is possibly relevant for the interpretation of photoemission spectra in cuprate superconductors at different hole doping levels. Received 31 July 2000  相似文献   

3.
We use neutron scattering and specific heat measurements to relate the response of the spin fluctuations and static antiferromagnetic (AF) order to the superconductivity in the electron-doped high-transition-temperature superconductor, Pr.88LaCe.12CuO4−δ (PLCCO) (Tc=24 K), as the system is tuned via a magnetic field applied beyond the upper critical field (Hc2) and driven into the normal state. The strength of the collective magnetic excitation commonly termed “resonance” decreases smoothly with increasing field and vanishes in the normal state, paralleling the behavior of the superconducting condensation energy. The suppression of superconductivity is accompanied by a smooth reduction in the very low energy spin fluctuations, and the concomitant emergence of static AF order. Our results suggest an intimate connection between the resonance and the superconducting condensation energy.  相似文献   

4.
The helicoidal magnetic structure of a MnGe compound doped with 25% Fe is studied by means of small-angle neutron scattering in a wide temperature range of 10–300 K. Analysis of the scattering-function profile demonstrates that magnetic structures inherent to both pure MnGe and its doped compounds are unstable. The doping of manganese monogermanide is revealed to lead to higher destabilization of the magnetic system. In passing from MnGe to Mn0.75Fe0.25Ge, the magnetic-ordering temperature T N decreases from 130 to 95 K, respectively. It is demonstrated that, at temperatures close to 0 K, the intensity of the contribution to scattering from stable spin helices decreases and the intensity of scattering by spin helix fluctuations increases with increasing impurity-metal concentration. An increased intensity of anomalous scattering caused by spin excitations existing in the system is observed. Helicoidal fluctuations and spin excitations corresponding to low temperatures indicate the quantum nature of the instability in the doped compound. However, MnGe doping with Fe atoms has no influence on the compound’s magnetic properties at temperatures of higher than T N. The temperature range of short-range ferromagnetic correlations is independent of concentrations and is restricted by temperatures T ranging from 175 to 300 K.  相似文献   

5.
A microscopic theory for the electron spectrum of the CuO2 plane within an effective p-d Hubbard model is proposed. The Dyson equation for the single-electron Green’s function in terms of the Hubbard operators is derived and solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron scattering on spin fluctuations induced by the kinematic interaction is described by a dynamical spin susceptibility with a continuous spectrum. The doping and temperature dependence of electron dispersions, spectral functions, the Fermi surface, and the coupling constant λ are studied in the hole-doped case. At low doping, an arc-type Fermi surface and a pseudogap in the spectral function close to the Brillouin zone boundary are observed. The text was submitted by the authors in English.  相似文献   

6.
We theoretically investigate the electron spin transport properties through a δ-doped magnetic-barrier nanostructure, which can be realized experimentally by depositing two identical ferromagnetic stripes with the opposite in-plane magnetization on the top of a semiconductor heterostructure in parallel configuration and by using atomic layer doping technique. The δ-doping dependent transmission, conductance and spin polarization are calculated exactly by analytically solving Schrödinger equation of the spin electron. It is found that the electronic spin-polarized behavior in this device can be manipulated by changing the weight and/or the position of the δ-doping. Therefore, such a device can be used as a controllable spin filter, which may be helpful for spintronics applications.  相似文献   

7.
LiFe1 − xMnxPO4 olivines are promising material for improved performance of Li‐ion batteries. Spin–phonon coupling of LiFe1 − xMnxPO4 (x = 0, 0.3, 0.5) olivines is studied through temperature‐dependent Raman spectroscopy. Among the observed phonon modes, the external mode at ~263 cm−1 is directly correlated with the motions of magnetic Fe2+/Mn2+ ions. This mode displays anomalous temperature‐dependent behavior near the Néel temperature, indicating a coupling of this mode with spin ordering. As Mn doping increases, the anomalous behavior becomes clearly weaker, indicating the spin–phonon coupling quickly decreases. Our analyses show that the quick decrease of spin–phonon coupling is due to decrease of the strength of spin–phonon coupling, but not change of spin‐ordering feature with Mn doping. Importantly, we suggest that the low electrochemical activity of LiMnPO4 is correlated with the weak spin–phonon coupling strength, but not with the weak ferromagnetic ground state. Our work would play an important role as a guide in improving the performances of future Li‐ion batteries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We report an angle-resolved photoemission spectroscopy study of electronic structures of Eu1−xLaxFe2As2 single crystals, in which the spin density wave transition is suppressed with La doping. In the paramagnetic state, the Fermi surface maps are similar for all dopings, with chemical potential shifts corresponding to the extra electrons introduced by the La doping. In the spin density wave state, we identify electronic structure signatures that relate to the spin density wave transition. Bands around M show that the energy of the system is saved by the band shifts towards high energies, and the shifts decrease with increasing doping, in agreement with the weakened magnetic order.  相似文献   

9.
Cr-doped manganites Sr0.9Ce0.1Mn1−yCryO3 (y=0, 0.05, and 0.10) have been systematically investigated by X-ray, magnetic, transport, and elastic properties measurements. For parent compound Sr0.9Ce0.1MnO3, it undergoes a metal-insulator (M-I) transition at 318 K, which is suggested to originate from a first-order structural transition accompanied by Jahn-Teller (JT) transition. With increasing Cr doping content, the JT transition temperature decreases. The Cr doping suppresses the antiferromagnetic (AFM) state and makes the system spin-glass (SG) behavior at low temperatures. In the vicinity of JT transition temperatures, the softening of Young's modulus originating from the coupling of the orbital (quadrupolar) moment of the eg orbital of Mn3+ ion to the elastic strain has been observed. The anomalous Young's modulus properties imply the electron-phonon coupling due to the JT effect may play an important role in the system.  相似文献   

10.
Long time effects in the spin glass Cd1-xMnxTe are investigated by measurements of the low field Faraday rotation effect. Strongly marked fluctuations are observed in the time dependence of the Faraday angle below the critical temperature. That seems to be a new effect in spin glasses.  相似文献   

11.
Systematic studies of X-ray, magnetic, electronic transport, and elastic properties have been performed on polycrystalline Bi0.5Ca0.4Sr0.1MnO3 sample. The sample exhibits charge ordering (CO) state below TCO (=304 K), accompanied by a distinct maximum in magnetization. The softening of Young's modulus in the vicinity of TCO indicates that there is a strong coupling of electron-phonon due to Jahn-Teller (JT) effect. The dynamic ferromagnetic spin correlations are observed at high temperatures above TCO, which are replaced by antiferromagnetic (AFM) spin fluctuations at a concomitant CO transition. Below 32 K, a spin-glass (SG) state dominates at low temperatures. The voltage-current (V-I) characteristics measurement results indicate that the non-linear conduction starts above a threshold current, giving rise to a region of negative differential resistance (NDR). The origin of the non-linear conduction is discussed in view of current induced collapse of CO state associated with phase-separation mechanism.  相似文献   

12.
Using a self consistent diagrammatic theory of the one band Hubbard model, a suppression of the superfluid density due to spin fluctuation induced scattering rates is found. This is most pronounced for underdoped systems and enforces fluctuations of the superconducting order parameter and a suppression of the superconducting mean field transition temperature for low doping. Consequently, an optimal doping concentration around χopt: = 0:14 occurs within the spin fluctuation mechanism.  相似文献   

13.
Pulsed NMR spin lattice relaxation measurements on 13C and 1H nuclei in undoped trans-polyacetylene have been carried out between 6 and 295 K. The results indicate that the spin lattice relaxation is due to equilibrium fluctuations of the orientational order parameter for the protons while the carbon relaxation can be attributed to their coupling to paramagnetic impurities. In this temperature range no contribution of solitons has been detected in the relaxation mechanisms.  相似文献   

14.
Diffuse polarized neutron scattering studies have been carried out on single crystals of pyrochlore spin ice Ho2−xYxTi2O7 (x=0, 0.3, and 1) to investigate the effects of doping and anisotropy on spin correlations in the system. The crystals were aligned with the (1 −1 0) orientation coincident with the direction of neutron polarization. For all the samples studied the spin flip (SF) diffuse scattering (i.e. the in-plane component) reveals that the spin correlations can be described using a nearest-neighbour spin ice model (NNSM) at higher temperatures (T=3.6 K) and a dipolar spin ice model (DSM) as the temperature is reduced (T=30 mK). In the non-spin flip (NSF) channel (i.e. the out-of-plane component), the signature of strong antiferromagnetic correlations is observed for all the samples at the same temperature as the dipolar spin ice behaviour appears in the SF channel. Our studies show that the non-magnetic dopant Y does not significantly alter SF or NSF scattering for the spin ice state, even when Y doping is as high as 50%. In this paper, we focus on the experimental results of the highly doped spin ice HoYTi2O7 and compare our results with pure spin ice Ho2Ti2O7. The crossover from a dipolar to a nearest-neighbour spin ice behaviour and the doping insensitivity in spin ices are briefly discussed.  相似文献   

15.
We report an electron paramagnetic resonance (EPR) investigation of the spin dynamics in the paramagnetic regime of the colossal magnetoresistive manganites La2/3Ca1/3Mn1?x Me x O3 (Me=Al, In;x≤0.05). The temperature dependences of the EPR linewidth and integral intensity have been analyzed in terms of the bottleneck spin relaxation and small-polaron hopping models. The exchange coupling integral between Mn3+ and Mn4+ ions and the polaron activation energy decrease with increasing doping level. A discussion is given concerning the factors which could explain the observed changes.  相似文献   

16.
Consideration of the self-consistent coupling between transverse spin fluctuations and charge fluctuations at the impurity provides an understanding of the magnetic atom's susceptibility law which reduces to that appropriate for a spin one half only in the symmetric configuration at low temperatures.  相似文献   

17.
We discuss the crossover of the form of the Cu Nuclear magnetic resonance (NMR) spin echo decay at the onset of Cu wipeout in lanthanum cuprates. Experimentally, the echo decay undergoes a crossover from Gaussian to exponential form below the temperature where the Cu NMR intensity drops. The wipeout and the change in behavior both arise because the nuclei experience spatially inhomogeneous spin fluctuations at low temperatures. We argue that regions where the spin fluctuations remain fast are localized on length scales of order 1-2 lattice spacings. The inhomogeneity is characterized by the local activation energy Ea(r); we estimate the functional form of Ea(r) for points where Ea>(r)∼0.  相似文献   

18.
Quasielastic scattering from spin fluctuations has been observed in UPt3 by Raman spectroscopy. The experiments for wave vectors q≈0 show a nearly temperature independent linewidth for 5 K ⩽ T ⩽ 300 K Complementary to neutron scattering results this establishes the q independence of the spin relaxation rate, indicating the localized nature of the spin fluctuations. A Raman-active phonon near 79 cm-1 (10 meV) shows a drastic increase in line-width with decreasing temperature, demonstrating strong electron-phonon coupling.  相似文献   

19.
The electronic spectrum of a doped semiconductor described by the Anderson-Holstein impurity model and its conductivity derived from the Kubo linear response theory are calculated. Two characteristic temperatures depending on the doping level x are found in the phase diagram, T PG and T λ(x). The pseudogap that opens in the single-particle spectrum at low doping levels and temperatures closes at the lower one, T PG. The pseudogap state of an insulator is attributed to spin fluctuations in a doped compound. At the higher characteristic temperature T λ(x),, spin fluctuations vanish and the doped compound becomes a paramagnetic poor metal. Two distinct metal-insulator crossovers between semiconductor-like and metallic temperature dependence of resistivity are found. An insulator-to-poor-metal transition occurs at T *(x) ≈ T λ(x). A poor-metal-to-insulator transition at a lower temperature is attributed to the temperature dependence of density of states in the pseudogap. It is shown that both transitions are observed in La2?x SrxCUO4.  相似文献   

20.
The influence of spin fluctuations on the magnetic properties of the ferromagnetic helimagnet MnSi has been studied in the Hubbard model taking into account the antisymmetric relativistic Dzyaloshinskii–Moriya interaction for band electrons. The obtained equations of the magnetic state indicate the correlation between the fine structure of the density of electronic states and the magnetization and coefficient of mode–mode coupling. It has been shown that the position of the Fermi energy in the immediate proximity on the point of the local minimum of the density of electronic states leads to large zero spin fluctuations at low magnetization of the helimagnet. When approaching from down the Néel point (approximately, at 0.9TN), the zero fluctuation disappear, and the temperature rise of thermal spin fluctuation is accompanied by the change in the sign of the coefficient of mode–mode coupling. A magnetic field perpendicular to the helicoids plane brings about the formation and subsequent “collapse” of the helimagnetic cone. However, the condition of the change in the sign of the coefficient of mode–mode coupling divides the MnSi phase diagram into two parts, one of which corresponds to the ferromagnetic state induced by the field, and the other corresponding to the paramagnetic state. In this case, the h–T diagram has a specific region, inside which the paramagnetic and the ferromagnetic state are instable. The boundaries of the region agree with the experimental data on the boundaries of the anomalous phase (a phase). It has been found that the results of calculations of the temperature dependence of the magnetic susceptibility agree with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号