共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Chérif M.S. Sifaoui 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,91(3):363-372
In this paper, heat transfer by simultaneous convection, conduction and radiation in a semi-transparent spherical porous medium is investigated. The ROSSELAND approximation is adopted to take account of radiation in the heat transfer rate. The routine used here to solve the set of differential equations is taken from the IMSL MATH/LIBRARY. Various results are obtained for the dimensionless temperature profiles in the solid and fluid phases, the radiative, conductive, convective and total heat fluxes. The effects of some radiative properties of the medium on the heat transfer rate are examined. 相似文献
2.
N. Aouled-Dlala E. Seddiki 《Journal of Quantitative Spectroscopy & Radiative Transfer》2007,107(3):443-457
A new technique is presented to improve the performance of the discrete ordinates method when solving the coupled conduction-radiation problems in spherical and cylindrical media. In this approach the angular derivative term of the discretized one-dimensional radiative transfer equation is derived from an expansion of the radiative intensity on the basis of Chebyshev polynomials. The set of resulting differential equations, obtained by the application of the SN method, is numerically solved using the boundary value problem with the finite difference algorithm. Results are presented for the different independent parameters. Numerical results obtained using the Chebyshev transform method compare well with the benchmark approximate solutions. Moreover, the new technique can easily be applied to higher-order SN calculations. 相似文献
3.
L.H. Liu J.Y. Tan B.X. Li 《Journal of Quantitative Spectroscopy & Radiative Transfer》2006,101(2):237-248
A meshless local Petrov-Galerkin (MLPG) approach is employed for solving the coupled radiative and conductive heat transfer in a one-dimensional slab with graded index media. The angular distribution term in discrete ordinate equation of radiative transfer within a one-dimensional graded index slab is discretized by a step scheme, and the meshless approach for radiative transfer is based on the discrete ordinate equation. A moving least-squares approximation is used to construct the shape function. Two particular test cases for coupled radiative and conductive heat transfer within a one-dimensional graded index slab are examined to verify this new approximate method. The temperatures and the radiative heat fluxes are obtained. The results are compared with the other benchmark approximate solutions. By comparison, the results show that the MLPG approach has a good accuracy in solving the coupled radiative and conductive heat transfer in one-dimensional graded index media. 相似文献
4.
5.
In this letter, water base nanofluid flow over wavy surface in a porous medium of spherical packing beds is investigated. The copper oxides particles are taken into account. These properties are rehabilitated when fluid interacts with porous walls. For porous medium, Dupuit–Forchheimer model; an extension of Darcy's law model is utilized. The natures of velocity and temperature profiles of nanofluid are discussed graphically whereas the values of convection heat transfer coefficient in the presence of different nanoparticles concentrations in porous medium is presented in tabular form. The obtained results illustrate that convection heat transfer is improved by nanoparticles concentration but reduces when fluid attract to pores structured medium. On the other hand, when particles are added in fluid, convection heat transfer rate is improved but flow velocity is declined. 相似文献
6.
A linear stability analysis determining the onset of oscillatory convection of an Oldroyd-B fluid in a bounded two-dimensional rectangular porous medium generated by Newtonian heating is conducted. Influences of viscoelastic parameters and Biot number on the onset of oscillatory convection, preferred modes and patterns of disturbed temperature contours are discussed. 相似文献
7.
Holger H. Walter Jochen Landgraf 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,95(2):175-200
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument. 相似文献
8.
Sílvia C. Hirata 《Physics letters. A》2010,374(26):2661-4613
By using the mathematical formalism of absolute and convective instabilities we study the nature of unstable three-dimensional disturbances of viscoelastic flow convection in a porous medium with horizontal through-flow and vertical temperature gradient. Temporal stability analysis reveals that among three-dimensional (3D) modes the pure down-stream transverse rolls are favored for the onset of convection. In addition, by considering a spatiotemporal stability approach we found that all unstable 3D modes are convectively unstable except the transverse rolls which may experience a transition to absolute instability. The combined influence of through-flow and elastic parameters on the absolute instability threshold, wave number and frequency is then determined, and results are compared to those of a Newtonian fluid. 相似文献
9.
Prabal Talukdar D. Trimis 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,84(4):527-537
This paper deals with the heat transfer analysis of a 2-D rectangular porous radiant burner. Combustion in the porous medium is modelled as a spatially dependent heat generation zone. The gas and the solid phases are considered in non-local thermal equilibrium, and separate energy equations are used for the two phases. The solid phase is assumed to be absorbing, emitting and scattering, while the gas phase is considered transparent to radiation. The radiative part of the energy equation is solved using the collapsed dimension method. The alternating direction implicit scheme is used to solve the transient 2-D energy equations. Effects of various parameters on the performance of the burner are studied. 相似文献
10.
Man Young Kim Seung Wook Baek 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,90(3-4):377-388
Radiative heat transfer in an axisymmetric enclosure with absorbing, emitting, and scattering medium is studied here by using the different methods such as MDOM, FVM, and MFVM with emphasis on the treatment of angular derivative term, which appears in curvilinear coordinates due to angular redistribution. After final discretization equation for MFVM is introduced by using the step scheme and directional weights, the present approach is validated by applying it to three different benchmarking problems with absorbing, emitting, and scattering medium. All of the results presented here support its accuracy as well as moderate efficiency. Finally, the present approaches are applied to a truncated cone-shaped enclosure as a body-fitted geometry case. 相似文献
11.
P.R. Parida 《Journal of Quantitative Spectroscopy & Radiative Transfer》2007,107(2):226-235
This work deals with the analysis of solidification of a semi-transparent planar layer subjected to radiative and convective cooling. Isothermal mushy-zone model is considered. Enthalpy formulation of the energy equation is solved using the lattice Boltzmann method. To compare the results, the same equation is also solved using the fully implicit finite volume method. Discrete ordinate method is used to compute the radiative information in both the approaches. Effects of radiative properties such as the extinction coefficient, the scattering albedo and refractive index on the solid fraction and temperature are analyzed. Results are validated with those available in the literature. Lattice Boltzmann method and the discrete ordinate method were found to work satisfactorily. 相似文献
12.
L.H. Liu L. Zhang H.P. Tan 《Journal of Quantitative Spectroscopy & Radiative Transfer》2006,97(3):446-456
In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems. 相似文献
13.
基于Brinkman-Forchheimer-extended Darcy流动模型,对恒热流条件下流体横掠多孔介质中平板的强制对流进行了边界层分析。通过建立二维流动的连续方程、动量方程和考虑流体与多孔介质局部非热平衡时的能量方程,应用数量级分析和积分的方法对方程组进行简化和求解,得出了流体的速度分布、温度分布、速度边界层和温度边界层的厚度、对流传热的理论关联式。研究结果表明:恒热流条件下流体横掠多孔介质中平板的速度边界层与光板时完全不同,其在平板前端迅速增长,随后沿着流动方向变得非常平坦并趋于一定值;而温度边界层的厚度发展则与光板时类似,沿着流动方向不断增长,且与壁面处热流密度的大小无关。 相似文献
14.
Nacer Berour Pascal Boulet Gérard Jeandel 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,86(1):9-30
This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical Sn quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls. 相似文献
15.
S.K. Mahapatra B.K. Dandapat 《Journal of Quantitative Spectroscopy & Radiative Transfer》2006,102(2):277-292
The current study addresses the mathematical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and isotropic scattering gray medium within two-dimensional square enclosure. A blended method where the concepts of modified differential approximation employed by combining discrete ordinate method and spherical harmonics method, has been developed for modeling the radiative transport equation. The gray participating medium is bounded by isothermal walls of two-dimensional enclosure which are considered to be opaque, diffuse and gray. The effect of various influencing parameters i.e., radiation-conduction parameter, surface emissivity, single scattering albedo and optical thickness has been illustrated. The adaptability of the present method has also been addressed. 相似文献
16.
Zhichao Wang Qiang Cheng Guihua Wang Huaichun Zhou 《Journal of Quantitative Spectroscopy & Radiative Transfer》2011,112(18):2835-2845
This paper extends the DRESOR (Distribution of Ratios of Energy Scattered by the medium Or Reflected by the boundary surface) method to radiative transfer in a variable refractive index medium. In this method, the intensity is obtained from the source term along the curved integration paths determined only by the variable refractive index, and the DRESOR values are calculated by the Monte Carlo method in which the propagation of the energy bundles are affected by Snell's law. With given temperatures on the black boundaries of a one-dimensional medium, the temperature distribution inside the medium with a variable scattering property is calculated under the condition of radiative equilibrium. It is shown that the DRESOR method has a good accuracy in the cases studied. For an isotropic-scattering medium with the same optical thickness, the scattering albedo has no effect on the temperature distribution, which can be obtained from the general equations and can be seen as an extension of what exists for a constant refractive index; however, the different refractive index causes obvious changes in the temperatures inside the medium. The effect of anisotropic scattering on the temperature distribution cannot be ignored, although it is still weaker than the effect caused by variation in the refractive index. 相似文献
17.
Parham Sadooghi 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,92(4):403-416
This work considers transient radiative and conductive heat transfer in a semitransparent layer of ceramic, submitted to several thermal and radiative boundary conditions. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. The solution procedure must provide accurate temperature distribution in the layer, so a nodal analysis based on Hottel's zonal method extended by ray tracing method is carried out. A finite difference method with non-uniform space and time increments is used to solve the transient energy equation, including a radiative heat source, coupled to a equation of radiative transfer. Variable spacing was used to concentrate grid points in regions with large temperature gradients. The influence of refractive index, optical thicknesses and conduction-radiation parameters is investigated. 相似文献
18.
A. Alexopoulos 《Physics letters. A》2009,373(35):3190-3196
The Maxwell-Garnett theory for a right-handed homogeneous system is extended in order to investigate the effective response of a medium consisting of low density distributed 3-dimensional inclusions. The polarisability factor is modified to account for inclusions with binary layered volumes and it is shown that such a configuration can yield doubly negative effective permittivity and permeability. Terms representing second-order scattering interactions between binary inclusions in the medium are derived and are used to reformulate conventional effective medium theory. In the appropriate limit, the one-body theory of Maxwell-Garnett is recovered. The scattering cross section of the spherical inclusions is determined and comparison is made to homogeneous dielectric scatterers in the Rayleigh limit. It is found that the scattering resonances can be manipulated using the inclusion parameters. Furthermore, the effect that two-interacting spherical inclusions in a medium have on the scattering cross section is investigated via higher order dipole moments while the issue of reducing the scattering cross section to zero is also examined. 相似文献
19.
Direct numerical simulation (DNS) has shown that Rayleigh–Bénard convection in a fluid-saturated porous medium self-organizes into narrowly spaced plumes at (ostensibly) asymptotically high values of the Rayleigh number Ra. In this Letter a combination of DNS and upper bound theory is used to investigate the dependence of the Nusselt number Nu on the domain aspect ratio L at large Ra . A novel algorithm is introduced to solve the optimization problems arising from the upper bound analysis, allowing for the best available bounds to be extended up to Ra≈2.65×104. The dependence of the bounds on L(Ra) is explored and a “minimal flow unit” is identified. 相似文献
20.
T. Hayat 《Physica A》2008,387(14):3399-3409
In this paper, the slip effects are discussed on the peristaltic flow of a viscous fluid in a porous medium. A long wavelength approximation is used in the flow modelling. The solutions for stream function and axial velocity are constructed by employing the Adomian decomposition method. Numerical integration has been used for the pumping and trapping phenomena. Graphs illustrate the physical behavior. It is noted that the size of the trapped bolus decreases and its symmetry disappears for large values of the slip parameter. Further, the peristaltic pumping rate decreases by increasing the slip parameter. 相似文献