首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2O3-MoO3 system shows a large panoply of phases depending on Bi/Mo ratio, among them, the low temperature phases of the homologous series Bi2(n+2)MonO6(n+1) with n=3, 4, 5 and 6. They exhibit, alike most of the phases of this system, strong fluorite sub-network. Nevertheless, a multitechnique approach has been followed in order to solve the crystal structure of the n=3 member, i.e. Bi10Mo3O24. From ab initio indexing X-ray powder pattern cell parameters were derived. It belongs to the monoclinic system, space group C2, with cell parameters: a=23.7282(2) Å, b=5.64906(6) Å, c=8.68173(9) Å, β=95.8668(7)° with Z=2. The matrix relating this cell with the fluorite one is 4 0 1/0 1 0/ 0  and a cationic localization was derived. HRTEM allowed the cationic Bi and Mo order to be modified and specified, as well as to build up a full structural ab initio model on the basis of crystal chemistry considerations. Simultaneous Rietveld refinement of multipattern X-ray and neutron powder diffraction data taking advantage of the neutron scattering length for O location have been performed. The goodness of the model was ascertained by low reliability factors, weighted Rb=4.97% and Rf=3.21%. This complex Bi10Mo3O24 structure, with 5Bi, 2Mo and 13O in different crystallographic positions of the asymmetric unit, shows good agreement between observed and calculated patterns within the data resolution. Moreover, the determination of this structure sets the basis for the crystallographic characterization of the complete family Bi2(n+2)MonO6(n+1), whose guidelines are also evidenced in this paper.  相似文献   

2.
The bismuth basic nitrate [Bi6O4(OH)4](NO3)6 crystallizes in a rhombohedral hexagonal unit cell with parameters , , , Z=6, space group R-3. The synthesis, formula determination, thermogravimetric analysis and nitrate assay, and finally, its crystal structure refinement determined at 150(2) K by synchrotron X-ray microcrystal diffraction are reported. Its structure is built from [Bi6O4(OH)4]6+ polycations, six per unit cell, disordered over two positions. Two oxygen atoms are common to the two antagonist polycations (full occupancy) while the remaining six are partially occupied. The [Bi6O4(OH)4]6+ hexanuclear clusters form columns along the c-axis. The cohesion between polycationic entities is effected by nitrate anions through either OH-ONO2 hydrogen bonds or Bi-ONO2 bonds. One of the two independent [NO3] groups is also disordered over two positions. Only a local order in the columns is obtained by formation of pairs of ordered [Bi6O4(OH)4]6+ polycations.  相似文献   

3.
The bismuth basic nitrate [Bi6O4.5(OH)3.5]2(NO3)11 crystallizes in the monoclinic space group P21 with , , , β=107.329(17)° and . Its structure has been determined from , twinned crystal X-ray data (16 781 reflections, 683 parameters, R=0.0703). It is built upon [Bi6Ox(OH)8−x](10−x)+, x=4 and x=5 hexanuclear complexes and nitrate groups. The polycationic entities are linked to the nitrate anions either by hydrogen bonds or through bismuth-oxygen coordination. Even at , the [Bi6O4(OH)4]6+ and [Bi6O5(OH)3]5+ polycations could not be observed as such, the crystal structure refinement only detecting an average [Bi6O4.5(OH)3.5]5.5+ polycation. To prove the presence of both hexanuclear complexes in the structure, we report the existence of a correlation between the bismuth-linked oxygen bond-valence parameters and the presence, or not, of hydroxyl groups. Moreover, the Raman spectrum of the new anhydrous bismuth basic nitrate is compared to those of [Bi6O5(OH)3](NO3)5·3H2O, [Bi6O4(OH)4](NO3)6·4H2O, and two yet uncharacterized bismuth nitrates.  相似文献   

4.
5.
Bi2Ti2O7 has been synthesized using a co-precipitation route from H2O2/NH3(aq) solutions of titanium with aqueous bismuth nitrate. The stoichiometric material crystallizes into a pale yellow cubic pyrochlore phase. A powder X-ray diffraction study showed this crystallization to be very temperature sensitive, the pure phase can only be obtained within a few degrees of 470°C. Time-of-flight powder neutron diffraction studies of Bi2Ti2O7 (Space group , a=10.37949(4) Å at ambient temperature, Z=8, Rp=3.95%, Rwp=4.75%) revealed positional disorder in the bismuth site and in the O′ oxide site both at ambient temperature and at 2 K.  相似文献   

6.
7.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

8.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

9.
The room temperature structure of Bi0.75Sr0.25MnO3 has been fitted to high-resolution synchrotron X-ray and time-of-flight neutron powder diffraction data. Constrained structural models were refined using a Pn11 supercell (, , , and α=89.894(1)°) of the underlying Pnma perovskite structure. The best-fit model evidences a 3:1 Mn3+/Mn4+charge ordering with only 30% of the ideal separation of bond valence sums. An ordered intergrowth of antiferro-orbitally ordered (LaMnO3 type) and charge and ferro-orbitally ordered (YBaMn2O6 type) blocks is observed. Off-centre Bi/Sr displacements are ferroelectrically ordered in this model.  相似文献   

10.
A new Os-containing, pillared perovskite, La5Os3MnO16, has been synthesized by solid state reaction in sealed quartz tubes. This extends the crystal chemistry of these materials which had been known only for Mo and Re, previously. The crystal structure has been characterized by X-ray and neutron powder diffraction and is described in space group C-1 with parameters a=7.9648(9) Å; b=8.062(1) Å; c=10.156(2) Å, α=90.25(1)°, β=95.5(1)°; γ=89.95(2)°, for La5Os3MnO16. The compound is isostructural with the corresponding La5Re3MnO16 phase. A very short Os-Os distance of 2.50(1) Å was found in the dimeric pillaring unit, Os2O10, suggestive of a triple bond as demanded by electron counting. Nearly spin only values for the effective moment for Os5+ () and Mn2+ () were derived from magnetic susceptibility data. Evidence for magnetic transitions was seen near ∼180 and 80 K. Neutron diffraction data indicate that Tc is 170(5) K. The magnetic structure of La5Os3MnO16 at 7 K was solved revealing that Os5+ and Mn2+ form ferrimagnetically coupled layers with antiferromagnetic interlayer ordering. The ordered moments are for Mn2+ and for Os5+, which are reduced from the respective spin only values of 5.0 and . The observation of net ferrimagnetic (antiparallel) intraplanar coupling between Os5+(t2g3) and Mn2+(t2g3eg2) is interesting as it appears to contradict the Goodenough-Kanamori rules for 180° superexchange.  相似文献   

11.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

12.
The family of hydroxymonophosphates of generic formula AMIII(PO3(OH))2 has been revisited using hydrothermal techniques. Four new phases have been synthesized: CsIn(PO3(OH))2, RbFe(PO3(OH))2, RbGa(PO3(OH))2 and RbAl(PO3(OH))2. Single crystal diffraction studies show that they exhibit two different structural types from previously observed other phases with A=H3O, NH4, Rb and M=Al, V, Fe. The “Cs-In” and “Rb-Fe” phosphates crystallize in the triclinic space group , with the cell parameters a=7.4146(3) Å, b=9.0915(3) Å, c=9.7849(3) Å, α=65.525(3)°, β=70.201(3)°, γ=69.556(3)° and V=547.77(4) Å3 (Z=3) for CsIn(PO3(OH))2 and a=7.2025(4) Å, b=8.8329(8) Å, c=9.4540(8) Å, α=65.149(8)°, β=70.045(6)°, γ=69.591(6)° and V=497.44(8) Å3 (Z=3) for α-RbFe(PO3(OH))2. The “Rb-Al” and “Rb-Ga” phosphates crystallize in the Rc space group, with a=8.0581(18) Å and c=51.081(12) Å (V=2872.5(11) Å3 and Z=18) for RbAl(PO3(OH))2 and a=8.1188(15) Å and c=51.943(4) Å (V=2965(8) Å and Z=18) for RbGa(PO3(OH))2. These two structural types are closely related. Both are built up from MIIIO6 octahedra sharing their apices with PO3(OH) tetrahedra to form [M3(PO3OH)6] units, but the latter exhibits a different configuration of their tetrahedra. The three-dimensional host-lattices result from the connection of the [M3(PO3OH)6] units and they present numerous intersecting tunnels containing the monovalent cations.  相似文献   

13.
Two new ternary bismuthides, La3MgBi5 and LaLiBi2, have been prepared by solid-state reactions of the corresponding pure metals in welded niobium tubes at high temperature. Their structures have been established by single-crystal X-ray diffraction studies. La3MgBi5 crystallizes in the hexagonal space group P63/mcm (No.193) with cell parameters of , , , and Z=2. LaLiBi2 belongs to tetragonal space group P4/nmm (No.129) with cell parameters of , ,, and Z=2. The structure of La3MgBi5 is of the ‘‘anti’’ Hf5Sn3Cu type, and features 1D linear Bi anionic chains and face-sharing [MgBi6/2]7− octahedral chains. The structure of LaLiBi2 is isotypic with HfCuSi2, and is composed of 2D Bi square sheets and 2D LiBi layers with La3+ ions as spacers. Band calculations indicate that both compounds are metallic.  相似文献   

14.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

15.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

16.
A novel 3-D compound of (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)]·6.5H2O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with , , , β=112.419(3)°, , Z=8, R1=0.0463 and wR2=0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group CO2CONHCH2CH2NH3+, which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445 nm.  相似文献   

17.
18.
Ba3MgSi2O8, a phosphor host examined for use in white-light devices and plant-growth lamps, was synthesized at 1225 °C in air. Its crystal structure has been determined and refined by a combined powder X-ray and neutron Rietveld method (, Z=3, a=9.72411(3) Å, c=7.27647(3) Å, V=595.870(5) Å3; Rp/Rwp=3.79%/5.03%, χ2=4.20). Superstructure reflections, observed only in the neutron diffraction data, provided the means to establish the true unit cell and a chemically reasonable structure. The structure contains three crystallographically distinct Ba atoms—Ba1 resides in a distorted octahedral site with S6 () symmetry, Ba2 in a nine-coordinate site with C3 (3) symmetry, and Ba3 in a ten-coordinate site with C1 (1) symmetry. The Mg atoms occupy distorted octahedral sites, and the Si atom occupies a distorted tetrahedral site.  相似文献   

19.
Two new zinc phosphites [Zn2(HPO3)2(H2PO3)][C3H5N2] 1 and [Zn2(HPO3)3][C4H7N2]2·2H2O 2 have been hydrothermally synthesized templated by imidazole and 2-methylimidazole. Single-crystal X-ray diffraction analysis reveals that the two compounds have the similar inorganic framework structures, which both exhibit 2D double layer structures with double 12-membered rings. Due to the different space-filling effect of the guest molecules, the stacking mode of adjacent layers and the arrangement mode of the organic amines are distinct. In 1, the adjacent layers are stacked in an -ABAB- sequence and monoprotonated imidazole molecules sit in the middle of 12MR windows, while in 2, the layers are stacked in an -AAAA- pattern. Monoprotonated 2-methylimidazole molecules occupy two different sites, one inserts into 12MR and the other resides in the interlayer region. Crystal data for 1: triclinic, P-1, , , , α=114.71(3)°, β=92.78(3)°, γ=113.04(3)°, , Z=2; for 2: triclinic, P-1, , , , α=68.244(7)°, β=76.143(7)°, γ=63.113(6)°, , Z=2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号