首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
The first alkali metal transition metal acetylides of general composition A2M0C2 (A = Na ? Cs, M0 = Pd, Pt) were obtained by solid state reactions of alkali metal acetylides with palladium and platinum. They are characterized by chains, which are separated by alkali metal ions. Analogous chains also separated by alkali metal ions are the characteristic structural feature of acetylides of composition AMIC2, which are accessible by reacting AC2H with MII in liquid ammonia (A = Li ? Cs, MI = Cu, Ag, Au). Despite their structural similarities they possess different properties, as acetylides of composition A2M0C2 are semiconductors with very small indirect band gaps and slightly extended C–C distances compared to a C–C triple bond, whereas acetylides of composition AMIC2 show a typical salt‐like behavior with C–C distances close to the expected value for a C–C triple bond of 120 pm. But with the help of simple chemical models these differences can be made plausible. Furthermore, it is shown that only by a combination of different methods (powder diffraction with X‐rays and neutrons, solid state NMR spectroscopy, Raman spectroscopy) it was possible to characterize this new class of compounds structurally and chemically.  相似文献   

2.
Comparative computational studies of reaction mechanisms of formation and unimolecular hydrogen evolution from alkali metal amidoboranes MNH2BH3 and their carbon analogs MC2H5 (M = Li – Cs) were performed at the B3LYP/def2‐TZVPPD level of theory. Transition states (TS) for the consecutive dehydrogenation reactions were optimized. In contrast to endergonic dehydrogenation of carbon analogs, dehydrogenation reactions of alkali metal amidoboranes are exergonic at room temperature. The nature of the alkali metal does not significantly affect the thermodynamic characteristics and activation energies of unimolecular gas phase dehydrogenation reactions. The influence of the alkali metal is qualitatively similar for amidoboranes and their carbon analogs.  相似文献   

3.
2-Iminopyrroles [HtBuL, 4-tert-butyl phenyl(pyrrol-2-ylmethylene)amine] are non-fluorescent π systems. However, they display blue fluorescence after deprotonation with alkali metal bases in the solid state and in solution at room temperature. In the solid state, the alkali metal 2-imino pyrrolates, M(tBuL), aggregate to dimers, [M(tBuL)(NCR)]2 (M=Li, R=CH3, CH(CH3)CNH2), or polymers, [M(tBuL)]n (M=Na, K). In solution (solv=CH3CN, DMSO, THF, and toluene), solvated, uncharged monomeric species M(tBuL)(solv)m with N,N′-chelated alkali metal ions are present. Due to the electron-rich pyrrolate and the electron-poor arylimino moiety, the M(tBuL) chromophore possesses a low-energy intraligand charge-transfer (ILCT) excited state. The chelated alkali cations rigidify the chromophore, restricting intramolecular motions (RIM) by the chelation-enhanced fluorescence (CHEF) effect in solution and, consequently, switch-on a blue fluorescence emission.  相似文献   

4.
Facile α‐H elimination from tetrakis(trimethylsilylmethyl)titanium precursors to give adducts of (alkylidene)bis(alkyl)titanium complexes is induced by light alkali metal amides of the NNNN‐type macrocyclic anionic ligand Me3TACD [(Me3TACD)H=1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane]. In the crystal, the alkali metal interacts with the carbene carbon atom or with the CH2 group of the trimethylsilymethyl ligand. The nucleophilic character of the carbene carbon atom was shown by the reaction with benzophenone and terminal acetylenes.  相似文献   

5.
Can cyclen (1,4,7,10‐tetraazacyclododecane) bind alkali metal azides? This question is addressed by studying the geometric and electronic structures of the alkali metal azide‐cyclen [M(cyclen)N3] complexes using density functional theory (DFT). The effects of adding a second cyclen ring to form the sandwich alkali metal azide‐cyclen [M(cyclen)2N3] complexes are also investigated. N3? is found to bind to a M+(cyclen) template to give both end‐on and side‐on structures. In the end‐on structures, the terminal nitrogen atom of the azide group (N1) bonds to the metal as well as to a hydrogen atom of the cyclen ring through a hydrogen bond in an end‐on configuration to the cyclen ring. In the side‐on structures, the N3 unit is bonded (in a side‐on configuration to the cyclen ring) to the metal through the terminal nitrogen atom of the azide group (N1), and through the other terminal nitrogen atom (N3) of the azide group by a hydrogen bond to a hydrogen atom of the cyclen ring. For all the alkali metals, the N3‐side‐on structure is lowest in energy. Addition of a second cyclen unit to [M(cyclen)N3] to form the sandwich compounds [M(cyclen)2N3] causes the bond strength between the metal and the N3 unit to decrease. It is hoped that this computational study will be a precursor to the synthesis and experimental study of these new macrocyclic compounds; structural parameters and infrared spectra were computed, which will assist future experimental work.  相似文献   

6.
The incorporation of heavy alkali metals into substrates is both challenging and essential for many reactions. Here, we report the formation of THF-solvated alkali metal benzyl compounds [PhCH2M ⋅ (thf)n] (M=Na, Rb, Cs). The synthesis was carried out by deprotonation of toluene with the bimetallic mixture n-butyllithium/alkali metal tert-butoxide and selective crystallization from THF of the defined benzyl compounds. Insights into the molecular structure in the solid as well as in solution state are gained by single crystal X-ray experiments and NMR spectroscopic studies. The compounds could be successfully used as alkali metal mediating reagents. The example of caesium showed the convenient use by deprotonating acidic C−H as well as N−H compounds to gain insight into the aminometalation using these reagents.  相似文献   

7.
A facile synthesis of heavy alkali metal octahydrotriborates (MB3H8; M=K, Rb, and Cs) has been developed. It is simply based on reactions of the pure alkali metals with THF?BH3, does not require the use of electron carriers or the addition of other reaction media such as mercury, silica gel, or inert salts as for previous procedures, and delivers the desired products at room temperature in very high yields. However, no reactions were observed when pure Li or Na was used. The reaction mechanisms for the heavy alkali metals were investigated both experimentally and computationally. The low sublimation energies of K, Rb, and Cs were found to be key for initiation of the reactions. The syntheses can be carried out at room temperature because all of the elementary reaction steps have low energy barriers, whereas reactions of LiBH4/NaBH4 with THF?BH3 have to be carried out under reflux. The high stability and solubility of KB3H8 were examined, and a crystal structure thereof was obtained for the first time.  相似文献   

8.
A facile synthesis of heavy alkali metal octahydrotriborates (MB3H8; M=K, Rb, and Cs) has been developed. It is simply based on reactions of the pure alkali metals with THF?BH3, does not require the use of electron carriers or the addition of other reaction media such as mercury, silica gel, or inert salts as for previous procedures, and delivers the desired products at room temperature in very high yields. However, no reactions were observed when pure Li or Na was used. The reaction mechanisms for the heavy alkali metals were investigated both experimentally and computationally. The low sublimation energies of K, Rb, and Cs were found to be key for initiation of the reactions. The syntheses can be carried out at room temperature because all of the elementary reaction steps have low energy barriers, whereas reactions of LiBH4/NaBH4 with THF?BH3 have to be carried out under reflux. The high stability and solubility of KB3H8 were examined, and a crystal structure thereof was obtained for the first time.  相似文献   

9.
The aim of this research report is to give an introduction to a specific solid state reaction applied in the field of alkali metal rich transition metal compounds. The approach is an explorative investigation of the oxidation of transition metals with CdO in the presence of alkali metal oxides and / or compounds with complex anions such as Na2SO4. Thereby, a range of unusual compounds have been obtained and structurally characterized. In particular, low valences and uncommon coordination numbers (C.N.) of the late 3d transition metals, as well as interesting varieties in the anionic part of the structures are accessible. The presented examples were selected mainly in order of their inherent aspects concerning the reactivity, structural features or electronic structures.  相似文献   

10.
Sodium and potassium carbamotelluroates [M(R2NCOTe), M = Na, K, Rb, Cs] were synthesized in moderate to good yields by reacting carbamoyl chloride with the corresponding alkali metal tellurides. The salts readily reacted with trimethylsilyl chloride to form O‐trimethylsilyl carbamotelluroate (R2NCTeOSiMe3), which further reacted with RbF and CsF to lead to the corresponding heavy alkali metal carbamotelluroates. These salts reacted with alkyl iodide and carbamoyl chlorides to give the corresponding Te‐alkyl carbamotelluroates and dicarbamoyl tellurides in moderate yields.  相似文献   

11.
The collisionally activated dissociation mass spectra of the protonated and alkali metal cationized ions of a triazole-epothilone analogue were studied in a Fourier transform ion cyclotron resonance mass spectrometer. The fragmentation pathway of the protonated ion was characterized by the loss of the unit of C3H4O3. However, another fragmentation pathway with the loss of C3H2O2 was identified for the complex ions with Na+, K+, Rb+, and Cs+. The branching ratio of the second pathway increases with the increment of the size of alkali metal ions. Theoretical calculations based on density functional theory (DFT) method show the difference in the binding position of the proton and the metal ions. With the increase of the radii of the metal ions, progressive changes in the macrocycle of the compound are induced, which cause the corresponding change in their fragmentation pathways. It has also been found that the interaction energy between the compound and the metal ion decreases with increase in the size of the latter. This is consistent with the experimental results, which show that cesiated complexes readily eject Cs+ when subject to collisions.  相似文献   

12.
Thermodynamic properties of alkali and alkaline earth metal amides are critical for their performance in hydrogen storage as well as catalytic ammonia synthesis. In this work, the ammonia equilibrium concentrations of LiNH2, KNH2 and Ba(NH2)2 at ca.10 bar of hydrogen pressure and different temperatures were measured by using a high-pressure gas-solid reaction system equipped with a conductivity meter. Hydrogenation of KNH2 gives the highest ammonia equilibrium concentration, followed by Ba(NH2)2 and LiNH2. Based on these data, the entropy and enthalpy changes of the reaction of ANH2+H2→AH+NH3 (A=Li, K, and Ba) were obtained from the van't Hoff equation. These thermodynamic parameters provide important information on the understanding of metal amides in catalytic ammonia synthesis reaction.  相似文献   

13.
Abstract

The kinetics of the oligomerization of methyl methacrylate (MMA) by methoxide/methanol solutions was studied using gas chromatography techniques. The effects of the type of the alkali metal, [CH OH]/[monomer] ratio, solvent, and initiator concentration were investigated. The rate of conversion using different alkali metal alkoxides was in the order CH3OLi < CH3ONa < CH3OK, but no oligomers higher than the addition product, RO—MMA (n=1), could be obtained by CH3OLL DPn decreased with increasing the [CH3OH]/[monomer] ratio and with lowering of the initiator concentration. Using DMSO as solvent increased the yields of the higher oligomers. The formation of n=1 was reversible, contrary to the formation of the higher oligomers. Some of the rate constants of the various steps of the oligomerization were estimated by taking into account the reversibility of the initiation reaction and assuming steady-state conditions in the concentration of the various anions present in the system.  相似文献   

14.
Bulky amido ligands are precious in s‐block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n‐butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3)(Dipp)]? (Dipp=2,6‐iPr2‐C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s‐block metal amides. Solvation by N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) or N,N,N′,N′‐tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi‐solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ‐nBu)] (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies.  相似文献   

15.
Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides, MN(SiMe3)2 (M=Li or Na) in hexane or THF produced the alkali metal guanidinates { (i-PrN)2C [N(SiMe3)2]Li }2 (1) and { (i-PrN)2C[N(SiMe3)2]Na(THF) } 2 (2) in nearly quantitative yields. Both complexes 1 and 2 were well characterized by elemental analysis, IR spectra, ^1H and ^13C NMR spectra, and X-ray diffraction. It was found that the guanidinates adopt different coordination modes in these complexes.  相似文献   

16.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

17.
Thermodynamic data on the alkali metal uranovanadates are summarized, thermodynamic functions of their formation and reactions of their synthesis are examined.  相似文献   

18.
This paper describes the synthesis and some reactions of potassium, rubidium, cesium and trimethylsilyl carbamoselenothioates. The potassium salts were synthesized in 70–80 % yields by reacting the corresponding thiocarbamoyl chlorides with potassium selenide in acetonitrile. Furthermore, the rubidium and cesium salts were obtained in good yields by treating the trimethylsilyl esters with the corresponding metal fluorides. The crystal structure of acetonitrile‐solvated potassium N,N‐dimethylcarbamoselenothioate consisted of dimeric units, featuring μ‐carbamoselenothioate anions associated with potassium cations that are located on the upper and lower sides of a plane involving two opposing carbamoselenothioate groups. These heavier alkali metal salts readily reacted with alkyl halides to give both S‐ and Se‐alkyl esters. The reaction of the potassium salts with trimethylsilyl chlorides forms S‐ and Se‐trimethylsilyl carbamoselenothioates which are in equilibrium. The reaction of the salts and silyl esters with organo Group‐14 and ‐15 elements halides gave exclusively the corresponding Se‐substituted products in good yields.  相似文献   

19.
对三硝基均苯三酚(TNPG)及其碱金属盐晶体进行DFT-B3LYP周期性计算研究, 求得其能带和电子结构, 探讨了结构-性能关系. 研究结果表明, 晶胞结构参数的计算值与实验值吻合较好. TNPG的导电性介于半导体和绝缘体之间, 而其碱金属盐均为半导体. 金属离子的引入使TNPG阴离子和金属阳离子通过配位键形成三维无限网状结构, 这种网状结构与晶体的半导体性质相关联. TNPG及其碱金属盐的前线轨道主要是由C—NO2的原子轨道组成, 配位水和金属离子对前线轨道的组成没有贡献. TNPG碱金属盐的带隙均比TNPG的小, 根据“最易跃迁原理”可推测碱金属盐均比TNPG敏感, 这与实验事实相符. 同时, 金属离子的引入增大了酚羟基上的氧原子的活性, 这也可能是导致碱金属盐比TNPG敏感的原因之一.  相似文献   

20.
A series of nanoporous carbon nitrides that contained a range of alkali metal cations (M@nanoC3N4: M=Li+, Na+, K+, Rb+, and Cs+) have been successfully synthesized from as‐synthesized g‐C3N4 by delamination with concentrated sulfuric acid, followed by neutralization with aqueous solutions of the corresponding alkali metal hydroxides. Tris(2,2′‐bipyridine)ruthenium(II) complexes, [Ru(bpy)3]2+, were grafted onto the carbon nitrides in an effort to explore the physicochemical properties of the deposited [Ru(bpy)3]2+, as well as its photocatalytic activity in the aerobic photooxidation of phenylboronic acid and H2 production from aqueous media in the presence of a Pt co‐catalyst under visible‐light irradiation. Highly porous nanoC3N4 could significantly enhance photocatalytic activity, because of its high surface area, owing to its unique porous structure. More interestingly, the photoluminescence intensities of [Ru(bpy)3]2+ complexes that were associated with M@nanoC3N4 increased in the presence of lighter alkali metal cations, which correlated with increased photocatalytic activities for both reactions. This study demonstrates that M@nanoC3N4 are fascinating supports, in which the local environment of an immobilized metal complex can be precisely controlled by varying the alkali metal cation from Li+ to Cs+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号