共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Jarlborg 《Solid State Communications》2011,151(8):639-642
Results for pseudogaps are obtained from a band model, where the stability of the gap depends on the amplitudes of vibrational displacements, or magnetic moments, and their coupling to electrons. A one-particle gap is favored by normal thermal excitations of phonons or spin waves. Another gap can be generated by spontaneous waves at lower temperature, if the electronic energy gain overcomes the elastic/magnetic energy needed for increased amplitudes of the oscillations. This state is characterized by charge or spin density waves. The pseudogap has many features in common with the superconducting gap, and the model lends support to the interpretation that the pseudogap is a precursor of, and competes with, superconducting pairing. 相似文献
2.
K. Levin Qijin ChenIoan Kosztin Boldizsár JankóYing-Jer Kao Andrew Iyengar 《Journal of Physics and Chemistry of Solids》2002,63(12):2233-2236
In the last few years evidence has been accumulating that there are a multiplicity of energy scales which characterize superconductivity in the underdoped cuprates. In contrast to the situation in BCS superconductors, the phase coherence temperature Tc is different from the energy gap onset temperature T∗. In addition, thermodynamic and tunneling spectroscopies have led to the inference that the order parameter Δsc is to be distinguished from the excitation gap Δ; in this way, pseudogap effects persist below Tc. It has been argued by many in the community that the presence of these distinct energy scales demonstrates that the pseudogap is unrelated to superconductivity. In this paper, we show that this inference is incorrect. We demonstrate that the difference between the order parameter and excitation gap and the contrasting dependences of T∗ and Tc on hole concentration x and magnetic field H follow from a natural generalization of BCS theory. This simple generalized form is based on a BCS-like ground state, but with self-consistently determined chemical potential in the presence of arbitrary attractive coupling g. We have applied this mean field theory with some success to tunneling, transport, thermodynamics, and magnetic field effects. We contrast the present approach with the phase fluctuation scenario and discuss key features which might distinguish our precursor superconductivity picture from that involving a competing order parameter. 相似文献
3.
Philip W. Anderson 《Journal of Physics and Chemistry of Solids》2002,63(12):2145-2148
It is argued that the dominant feature of the phase diagram of the high Tc cuprates is the crossover to the pseudogap phase in the energy (temperature) region E(T∗). We argue that this scale is determined by the effective anti-ferromagnetic interaction which we calculate to be Jeff=Jsuperexchange−xt where x is the hole percentage and t the hopping integral. 相似文献
4.
Superconductivity in the single-walled carbon nanotubes is investigated. First, effect of diameter increasing on the clean systems critical temperature, Tc, is calculated. Then effect of impurity doping on the reduction of critical temperature Tc, of single-walled carbon nanotubes, is discussed. Our calculations illustrate that metallic zigzag single-walled carbon nanotubes have higher Tc than armchair single-walled carbon nanotubes with approximately same diameters and Tc decreases by increasing diameter. This can explain why superconductivity could be found in the small diameter single-walled carbon nanotubes. We found for the impurity doped systems, impurity in the strong scattering regime can decrease Tc significantly while in the weak scattering regime Tc is not affected by impurity doping. 相似文献
5.
R.S. Markiewicz Susmita Basak A. Bansil 《Journal of Electron Spectroscopy and Related Phenomena》2010,181(1):23-27
We demonstrate that many features ascribed to strong correlation effects in various spectroscopies of the cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self-energy is calculated over the full doping range from half-filling to the overdoped system. In the normal state, the spectral function reveals four subbands: two widely split incoherent bands representing the remnant of the two Hubbard bands, and two additional coherent, spin- and charge-dressed in-gap bands split by a spin-density wave, which collapses in the overdoped regime. The resulting coherent subbands closely resemble our earlier mean-field results. Here we present an overview of the combined results of our mean-field calculations and the newer extensions into the intermediate coupling regime. 相似文献
6.
We determine the magnetic-field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic lattice model with d-wave superconductivity account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors. 相似文献
7.
The interplay between the superconducting gap and normal-state pseudogap in the bilayer cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. It is shown that the charge carrier interaction directly from the interlayer coherent hopping in the kinetic energy by exchanging spin excitations does not provide the contribution to the normal-state pseudogap in the particle–hole channel and superconducting gap in the particle–particle channel, while only the charge carrier interaction directly from the intralayer hopping in the kinetic energy by exchanging spin excitations induces the normal-state pseudogap in the particle–hole channel and superconducting gap in the particle–particle channel, and then the two-gap behavior is a universal feature for the single layer and bilayer cuprate superconductors. 相似文献
8.
L.B. IoffeA.J. Millis 《Journal of Physics and Chemistry of Solids》2002,63(12):2259-2268
The effect of proximity to a Mott insulating phase on the charge transport properties of a superconductor is determined. An action describing the low energy physics is formulated and different scenarios for the approach to the Mott phase are distinguished by different variation with doping of the parameters in the action. A crucial issue is found to be the doping dependence of the quasiparticle charge which is defined here and which controls the temperature and field dependence of the electromagnetic response functions. Presently available data on high-Tc superconductors are analyzed. The data, while neither complete nor entirely consistent, suggest that neither the quasiparticle velocity nor the quasiparticle charge vanish as the Mott phase is approached, in contradiction to the predictions of several widely studied theories of lightly doped Mott insulators. Implications of the results for the structure of vortices in high-Tc superconductors are determined. 相似文献
9.
10.
We study pairing correlations in ultrasmall superconductor in the nanoscopic limit by means of a toy model where electrons are confined in a single, multiply degenerate energy level. We solve the model exactly to investigate the temperature and magnetic field dependence of number parity effect (dependence of ground state energy on evenness or oddness of the number of electrons). We find a different parity effect parameter to critical temperature ratio (4 rather than 3.5) which turns out to be consistent with exact solution of the BCS gap equation for our model. This suggests the equivalence between the parity effect parameter and the superconducting gap. We also find that magnetic field is suppressed as temperature increases. 相似文献
11.
Esmeralda Lizet Martinez Piñeiro Roberto Escudero Lauro Bucio 《Solid State Communications》2011,151(6):425-429
NiBi3 polycrystals were synthesized via a solid state method. X-ray diffraction analysis shows that the main phase present in the sample corresponds to NiBi3 in a weight fraction of 96.82 % according to the refinement of the crystalline structure. SEM - EDS and XPS analysis reveal a homogeneous composition of NiBi3, without Ni traces. The powder superconducting samples were studied by performing magnetic measurements. The superconducting transition temperature and critical magnetic fields were determined as , Oe and Oe. The superconducting parameters were , , and κ=5.136. Isothermal measurements below the transition temperature show an anomalous behavior. Above the superconducting transition the compound presents ferromagnetic characteristics up to 750 K, well above the Ni Curie temperature. 相似文献
12.
Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different Néel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon binding them into a physical hole. Through gauge interaction the spin vortex attraction induces the formation of spin-singlet (RVB) spinon pairs with a lowering of the spinon gap. Lowering the temperature, the approach exhibits two crossover temperatures: at the higher crossover a finite density of incoherent holon pairs are formed leading to a reduction of the hole spectral weight, while at the lower crossover a finite density of incoherent spinon RVB pairs are also formed, giving rise to a gas of incoherent preformed hole pairs, and magnetic vortices appear in the plasma phase. Finally, at a even lower temperature the hole pairs become coherent, the magnetic vortices becoming dilute and superconductivity appears. The superconducting mechanism is not of BCS-type since it involves a gain in kinetic energy (for spinons) coming from the spin interactions. 相似文献
13.
Yongkang Luo 《Journal of Physics and Chemistry of Solids》2011,72(5):430-433
We investigate the chemical pressure effect due to P doping in the CeFeAs1−xPxO0.95F0.05(0≤x≤0.4) system. The compound CeFeAsO0.95F0.05 without P doping is on the boundary between antiferromagnet (AFM) and superconductor. The AFM order of Ce3+ local moments causes a significant reentrance behavior in both resistivity and magnetic susceptibility. Upon P doping, Tc increases and reaches a maximum of 21.3 K at x=0.15, and then it is suppressed to lower temperatures. Meanwhile, the AFM order of Ce3+ ions remains nearly the same in the whole doping range (0≤x≤0.4). Our experimental results suggest a competition between superconductivity and Kondo effect in the Ce 1111 system. 相似文献
14.
We examine the possible electron-phonon spectra that produce both Tc=39 K and an isotope coefficient β=0.32±0.01, with Eliashberg theory. We assess the viability of the conventional electron-phonon mechanism in light of these results, compared with ab initio calculations of the electron-phonon spectrum. Comparisons are made with similar considerations for low Tc materials. 相似文献
15.
According to recent experimental findings the leading pairing resides in the nodal (FS arcs) momentum region of hole doped cuprates. The pseudogap is an antinodal feature. A corresponding multiband model of the electronic background evolving with doping serves the usually presented phase diagram. The pairing is due by the pair-transfer between overlapping nodal defect (polaron) band and the itinerant band. A bare gap vanishing with extended doping between the antinodal defect subband and the itinerant band top leads to the formation of the pseudogap as a perturbative band-structure effect. The calculated behaviour of two superconducting gaps and of the pseudogap on the whole doping scale is in qualitative agreement with the observations. Arguments to include cuprates into the class of multiband-multigap superconductors are given by these results. 相似文献
16.
Rikio Settai Keisuke Katayama Tetsuya Takeuchi Ilya Sheikin 《Journal of Physics and Chemistry of Solids》2010,71(4):700-703
We have studied superconducting properties by measuring the electrical resistivity and magnetization for a single crystal of Rh17S15 with a superconducting transition temperature Tc=5.4 K. The upper critical field Hc2(0) and the lower critical field Hc1(0) were obtained as 20.5 and 0.0033 T, respectively. Correspondingly, the coherence length and the penetration depth were estimated to be 40 and 4900 Å, respectively, indicating that Rh17S15 is a typical type-II superconductor with strong correlations of conduction electrons with a 4d-electron character of Rh atoms. The present electron correlations are formed to be enhanced with increasing pressure. 相似文献
17.
Brian M. Andersen Markus Schmid P.J. Hirschfeld 《Journal of Physics and Chemistry of Solids》2011,72(5):358-361
We review a theoretical scenario for the origin of the spin-glass phase of underdoped cuprate materials. In particular it is shown how disorder in a correlated d-wave superconductor generates a magnetic phase by inducing local droplets of antiferromagnetic order which eventually merge and form a quasi-long range ordered state. When correlations are sufficiently strong, disorder is unimportant for the generation of static magnetism but plays an additional role of pinning disordered stripe configurations. We calculate the spin excitations in a disordered spin-density wave phase, and show how disorder and/or applied magnetic fields lead to a slowing down of the dynamical spin fluctuations in agreement with neutron scattering and muon spin rotation (μSR) experiments. 相似文献
18.
In 2012, a new layered superconductor where BiS2 layer is the superconducting layer was discovered. So far, seven types of BiS2-based superconductors and two related superconductors have been discovered. In this article, the diversity of the crystal structure and the physical properties of the BiS2-based superconductors are reviewed. Furthermore, notable characteristics of superconductivity in the BiS2 family are introduced. The prospects for raising Tc in this family are proposed on the basis of experimental and theoretical studies. 相似文献
19.
S. Kawasaki T. Oka X.F. Wang Guo-qing Zheng 《Journal of Physics and Chemistry of Solids》2011,72(5):501-504
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound. 相似文献
20.
Single core stainless steel (SS) sheathed MgB2 tapes have been made by the powder-in-tube (PIT) method using commercial Mg and B powders in two series, one with nominal composition and the other with excess Mg. The electrical resistivity and susceptibility measurements have been carried out to evaluate residual resistivity ratio (RRR), the coherence length ξ(0) and critical current density JC(T) in these tapes. Detailed structural analysis of the core material has been carried out to correlate the superconducting properties with the crystallinity. In the optimized growth condition the MgB2 tapes exhibited an estimated JC of ∼1.4×107 A/m2 at 39.45 K in zero field and the zero temperature coherence length is found to be ∼68 Å. MgB2 tapes fabricated from starting powders having nominal Mg-composition have been shown to exhibit higher JC than those fabricated from excess magnesium composition of the starting powders. The strained lattice together with the presence of nanosized MgO inclusion having size smaller than the coherence length, are shown to be responsible for the observed higher JC. 相似文献