首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valence-band and conduction-band the electronic structure of the CrS (δ=0) and Cr5S6 (δ=0.17) has been investigated by means of photoemission and inverse-photoemission spectroscopies. The bandwidth of the valence bands of Cr5S6 (8.5 eV) is wider than that of CrS (8.1 eV), though the Cr 3d partial density of states evaluated from the Cr 3p-3d resonant photoemission spectroscopy is almost unchanged between the two compounds concerning shapes as well as binding energies. The Cr 3d (t2g) exchange splitting energies of CrS and Cr5S6 are determined to be 3.9 and 3.3 eV, respectively.  相似文献   

2.
Surfaces of mineral cuprite prepared by fracture under UHV have been characterised by synchrotron XPS and near-edge X-ray absorption spectroscopy before and after exposure to ambient air. Before exposure of the cuprite, the Cu 2p photoelectron and Cu L2,3-edge absorption spectra were consistent with CuI with very little d9 character. Surface-enhanced O 1s spectra from the unexposed mineral revealed a surface species, with binding energy 0.95 ± 0.05 eV below the principal cuprous oxide peak, assigned to under-coordinated oxygen. A second surface species, with binding energy about 1 eV higher than the principal peak, was assigned to either hydroxyl derived from chemisorbed water vapour or surface oxygen dimers produced by restructuring of the cuprite fracture surface. The width of the principal O 1s peak was 0.66 ± 0.02 eV. The observed Cu L3- and O K-edge absorption spectra were in good agreement with those simulated for the cuprite structure. After exposure of the fracture surface to ambient air, the low binding energy O 1s surface species was barely discernible, the original high binding energy O 1s surface species remained of comparable intensity, new intensity appeared at an even higher (∼1.9 eV) binding energy, and the Cu L2,3-edge spectrum indicated the presence of CuII, consistent with the formation of a thin surface layer of Cu(OH)2.  相似文献   

3.
The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (Ec—0.046 eV, Ec—0.186 eV, Ec—0.314 eV. Ec—0.528 eV and Ec—0.605 eV) were detected. The metastable defect Ec—0.046 eV having a trap signature similar to E1 is observed for the first time. Ec—0.314 eV and Ec—0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.  相似文献   

4.
Geometries and stabilities of the linear aluminum-bearing carbon chains AlC2nH (n = 1-5) in their ground states have been explored by the DFT-B3LYP and RCCSD(T) methods. Structures of the X1Σ+ and 11Π electronic states have also been optimized by the CASSCF approach. The studies indicate that these species have single-triple bond alternate pattern, AlCCCC?CCH, and the electronic excitation from X1Σ+ to 11Π leads to the shortening of the AlC bonds. The vertical excitation energies of the 11Π ← X1Σ+ and 21Π ← X1Σ+ transitions for AlC2nH (n = 1-5) have been investigated by the CASPT2, EOM-CCSD, and TD-B3LYP levels of theory with the cc-pVTZ basis set, respectively. CASPT2-predicted 11Π ← X1Σ+ transition energies are 3.57, 3.44, 3.33, 3.26, and 3.21 eV, respectively. For AlC2H, our estimate agrees very well with the experimental value of 3.57 eV. In addition, the AlC bond dissociation energies and the exponential-decay curves for these vertical excitation energies are also discussed.  相似文献   

5.
This paper investigates the adsorption sites and electronic structure of the adsorption of CO2 on the Pt(1 0 0) surface by ab initio periodic density functional theory (DFT) methods. Several parallel and vertical adsorption sites are examined in detail. The results show that the adsorption energy for the atop hollow horizontal (thh) site is 0.34 eV. However, other sites only have small binding energies and these values are very close. For an atop hollow horizontal site, the calculated elecronic interaction is contributed to not only the Pt-O atoms, but also Pt-C atoms. So the results indicate that the thh site is the most favorable and stable.  相似文献   

6.
Structural, electronic properties and relative stability of quasi-two-dimensional (2D) free-standing planar nano-block (NBs) structures Tin+1Al0.5Cn and Tin+1Cn (n = 1 and 2), which can be prepared using the recently developed procedure of exfoliation of corresponding NBs from MAX phases, were examined within first principles calculations in comparison with parent MAX phases Ti3AlC2 and Ti2AlC. We found that in general Tin+1Cn and Tin+1Al0.5Cn NBs retain the atomic geometries of the corresponding blocks of the MAX phases, but some structural distortions for the NBs occur owing to the lowering of the coordination number for atoms in the external Ti sheets of the nano-block structures. Our analysis based on their cohesive and formation energies reveals that the stability of the nano-block structures increases with index n (or, in other words, with a growth of the number of Ti–C bonds), the Al-containing NBs becoming more stable than the “pure” Ti–C NBs. Our data show that the magnetization of the simulated planar nano-block structures can be expected; so, for the Ti3C2 nano-block the most stable will be the spin configuration, where within each external Ti sheet the spins are coupled ferromagnetically together with antiferromagnetic ordering between opposite external titanium sheets of this nano-block.  相似文献   

7.
Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, EC—0.33 eV, EC—0.36 eV, EC—0.38 eV and EC—0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at EC—0.58 eV. Isochronal annealing of the passivated material between 50 and 300 °C, revealed the emergence of a secondary defect, not previously observed, at EC—0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 °C, as all the defects originally observed in the reference sample were recovered.  相似文献   

8.
Nitridation of GaAs (1 0 0) by N2+ ions with energy Ei = 2500 eV has been studied by Auger- and Electron Energy Loss Spectroscopy under experimental conditions, when electrons ejected only by nitrated layer, without contribution of GaAs substrate, were collected. Diagnostics for quantitative chemical analysis of the nitrated layers has been developed using the values of NKVV Auger energies in GaN and GaAsN chemical phases measured in one experiment, with the accuracy being sufficient for separating their contributions into the experimental spectrum. The conducted analysis has shown that nanofilm with the thickness of about 4 nm was fabricated, consisting mainly of dilute alloy GaAs1−xNx with high concentration of nitrogen x ∼ 0.09, although the major part of the implanted nitrogen atoms are contained in GaN inclusions. It was assumed that secondary ion cascades generated by implanted ions play an important role in forming nitrogen-rich alloy.  相似文献   

9.
In this study, the interaction of CF with the clean Si(1 0 0)-(2 × 1) surface at normal incidence and room temperature was investigated using molecular dynamics simulation. Incident energies of 2, 12 and 50 eV were simulated. C atoms, arising from dissociation, preferentially react with Si to form Si-C bonds. A SixCyFz interfacial layer is formed, but no etching is observed. The interfacial layer thickness increases with increasing incident energy, mainly through enhanced penetration of the silicon lattice. Silicon carbide and fluorosilyl species are formed at 50 eV, which is in good agreement with available experimental data. The level of agreement between the simulated and experimental results is discussed.  相似文献   

10.
Polycrystalline Mn2VGa samples were synthesized using an arc furnace. X-ray diffraction (XRD) pattern was analyzed using General Structural Analysis System (GSAS) package and the refined lattice parameter was found to be 5.905 Å. We found magnetic ordering in the system below 783 K and the spontaneous magnetization was observed to be following the Bloch T3/2 law below 80 K. The magnetic moment per formula unit at 5 K was observed to be 1.88 μB. The temperature variation of the electrical resistance was found to follow the relation Rn=R0n+aTα (α=1.616) and (Rn—normalized electrical resistance) in the temperature range of 25–300 K and we observed almost a temperature independent variation of the electrical resistance below 25 K indicating the absence of spin-flip scattering.  相似文献   

11.
A high-quality ferromagnetic GaMnN (Mn=2.8 at%) film was deposited onto a GaN buffer/Al2O3(0 0 0 1) at 885 °C using the metal-organic chemical vapor deposition (MOCVD) process. The GaMnN film shows a highly c-axis-oriented hexagonal wurtzite structure, implying that Mn doping into GaN does not influence the crystallinity of the film. No Mn-related secondary phases were found in the GaMnN film by means of a high-flux X-ray diffraction analysis. The composition profiles of Ga, Mn, and N maintain nearly constant levels in depth profiles of the GaMnN film. The binding energy peak of the Mn 2p3/2 orbital was observed at 642.3 eV corresponding to the Mn (III) oxidation state of MnN. The presence of metallic Mn clusters (binding energy: 640.9 eV) in the GaMnN film was excluded. A broad yellow emission around 2.2 eV as well as a relatively weak near-band-edge emission at 3.39 eV was observed in a Mn-doped GaN film, while the undoped GaN film only shows a near-band-edge emission at 3.37 eV. The Mn-doped GaN film showed n-type semiconducting characteristics; the electron carrier concentration was 1.2×1021/cm3 and the resistivity was 3.9×10−3 Ω cm. Ferromagnetic hysteresis loops were observed at 300 K with a magnetic field parallel and perpendicular to the ab plane. The zero-field-cooled and field-cooled curves at temperatures ranging from 10 to 350 K strongly indicate that the GaMnN film is ferromagnetic at least up to 350 K. A coercive field of 250 Oe and effective magnetic moment of 0.0003 μB/Mn were obtained. The n-type semiconducting behavior plays a role in inducing ferromagnetism in the GaMnN film, and the observed ferromagnetism is appropriately explained by a double exchange mechanism.  相似文献   

12.
He(I), He(II) and X-ray-excited photoelectron spectra of the trifluoromethylgermanes (CF3)4?nGeHn(n = 1–3) are reported. Assignments of the valence region are made on the basis of semi-empirical CNDO/2 calculations, comparisons with the spectra of related series of molecules, band shapes, and relative-intensity changes between features in the He(I) and He(II) spectra. Core-level binding energies are also compared with those of related species, and the usefulness of CNDO/2 and EESOP charge calculations is examined.  相似文献   

13.
The principal features in the LVV Auger spectra from the oxides of third-row elements are semi-empirically derived for the XO4n? species of Si, PS and Cl, and the XO6n? species of Mg and Al. Electron molecular orbital energies are derived from X-ray photoelectron and X-ray emission spectra; the central atom 3p electron density of states is taken from the Kβ X-ray emission. Two principal peaks, separated by ca. 14 eV, are predicted for the central atom LVV Auger spectra and are experimentally confirmed for the XO4n? species. Similar features are observed in published spectra for oxides of Mg and Al. These peaks correspond to central atom 3p electrons in orbitals whose energy is dominated by the atomic oxygen 2s and 2p electron levels. An examination of the total LVV line-shape shows that a self-convolution of the Kβ spectra does not reproduce the more subtle features, which are probably a result of the contributions of other electron orbitals and final-state effects. The possibility of using the LVV Auger spectra to discriminate between various oxide stoichiometries, i.e. sulfate, sulfite, etc., and between various ligand species, i.e. carbide, nitride, oxide, fluoride, is discussed.  相似文献   

14.
Classic molecular dynamics (MD) calculations were performed to investigate the deposition of thin hydrocarbon film. SiC (1 0 0) surfaces were bombarded with energetic CH3 molecules at impact energies ranging from 50 to 150 eV. The simulated results show that the deposition yield of H atoms decreases with increasing incident energy, which is in good agreement with experiments. During the initial stages, with breaking Si-C bonds in SiC by CH3 impacting, H atoms preferentially reacts with resulting Si to form Si-H bond. The C/H ratio in the grown films increases with increasing incident energy. In the grown films, CH species are dominant. For 50 eV, H-Csp3 bond is dominant. With increasing energy to 200 eV, the atomic density of H-Csp2 bond increases.  相似文献   

15.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

16.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

17.
H.Y. Hu 《Applied Surface Science》2008,254(24):8029-8034
The chemical structure and site location of sulfur atoms on n-GaAs (1 0 0) surface treated by bombardment of S+ ions over their energy range from 10 to 100 eV have been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. The formation of Ga-S and As-S species on the S+ ion bombarded n-GaAs surface is observed. An apparent donor doping effect is observed for the n-GaAs by the 100 eV S+ ion bombardment. It is found that the S+ ions with higher energy are more effective in the formation of Ga-S species, which assists the n-GaAs (1 0 0) surface in reconstruction into an ordered (1 × 1) structure upon subsequent annealing. The treatment is further extended to repair Ar+ ion damaged n-GaAs (1 0 0) surface. It is found that after a n-GaAs (1 0 0) sample is damaged by 150 eV Ar+ ion bombardment, and followed by 50 eV S+ ion treatment and subsequent annealing process, finally an (1 × 1) ordering GaAs (1 0 0) surface with low surface states is obtained.  相似文献   

18.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

19.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

20.
D.M. Riffe  N.D. Shinn  K.J. Kim 《Surface science》2009,603(24):3431-3033
We have measured W and Pt 4f7/2 core-level photoemission spectra from interfaces formed by ultrathin Pt layers on W(1 1 0), completing our core-level measurements of W(1 1 0)-based bimetallic interfaces involving the group-10 metals Ni, Pd, and Pt. With increasing Pt coverage the sequence of W spectra can be described using three interfacial core-level peaks with binding-energy (BE) shifts (compared to the bulk) of −0.220 ± 0.015, −0.060 ± 0.015, and +0.110 ± 0.010 eV. We assign these features to 1D, 2D pseudomorphic (ps), and 2D closed-packed (cp) Pt phases, respectively. For ∼1 ps ML the Pt 4f7/2 BE is 71.40 ± 0.02 eV, a shift of +0.46 ± 0.09 eV with respect to the BE of bulk Pt metal. The W 4f7/2 core-level shifts induced by all three adsorbates are semiquantitatively described by the Born-Haber-cycle based partial-shift model of Nilsson et al. [39]. As with Ni/W(1 1 0), the difference in W 4f7/2 binding energies between ps and cp Pt phases has a large structural contribution. The Pt 4f lineshape is consistent with a small density of states at the Fermi level, reflective of the Pt monolayer having noble-metal-like electronic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号