首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6Li and 7Li MAS NMR spectra including 1D-EXSY (exchange spectroscopy) and inversion recovery experiments of fast ionic conducting Li2MgCl4, Li2-xCuxMgCl4, Li2-xNaxMgCl4, and Li2ZnCl4 have been recorded and discussed with respect to the dynamics and local structure of the lithium ions. The chemical shifts, intensities, and half-widths of the Li MAS NMR signals of the inverse spinel-type solid solutions Li2-xMIxMgCl4 (MI=Cu, Na) with the copper ions solely at tetrahedral sites and sodium ions at octahedral sites and the normal spinel-type zinc compound, respectively, confirm the assignment of the low-field signal to Litet of inverse spinel-type Li2MgCl4 and the high-field signal to Lioct as proposed by Nagel et al. (2000). In contrast to spinel-type Li2-2xMg1+xCl4 solid solutions with clustering of the vacancies and Mg2+ ions, the Cu+ and Na+ ions are randomly distributed on the tetrahedral and octahedral sites, respectively. The activation energies due to the various dynamic processes of the lithium ions in inverse spinel-type chlorides obtained by the NMR experiments are Ea=6.6-6.9 and ΔG*>79 KJ mol−1 (in addition to 23, 29, and 75 kJmol-1 obtained by other techniques), respectively. The largest activation energy of >79 KJ mol−1 corresponds to hopping exchange processes of Li ions between the tetrahedral 8a sites and the octahedral 16d sites. The smallest value of 6.6-6.9 KJ mol−1, which was derived from the temperature dependence of both the spin-lattice relaxation times T1 and the correlation times τC of Litet, reveals a dynamic process for the Litet ions inside the tetrahedral voids of the structure, probably between fourfold 32e split sites around the tetrahedral 8a site.  相似文献   

2.
The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs14Li24[Li18Si72O172]·14H2O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023–11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs+ and Li+ of the material. The resulting ionic conductivity value of 3.2×10−3 S cm−1 at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print (doi:10.1016/j.micromeso.2007.03.040 available online since April 19, 2007)]. The structural basis of a Na+-exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na+ for both parts of Cs and Li cations, agreeing with idealized cell content, Na8Cs8Li40Si72O172. As a result of the incorporation of Na+ in large pores, the number of Li+ vacancies in dense Li2O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map.  相似文献   

3.
Two separate samples of Na3C60 were prepared by direct reaction of C60 with sodium metal vapor, and subjected to different annealing times of 10 days and 16 days. Solid-state 13C and 23Na NMR, along with elemental analysis, powder X-ray diffraction (XRD) and Raman spectroscopy, were used to characterize both samples. The Raman spectra of both materials have a single peak at 1447 cm−1 which correspond to the Ag peak of C603−, consistent with the stoichiometry of NaxC60 with x=3. The powder XRD patterns are also virtually identical for both samples. However, solid-state 23Na and 13C NMR spectra of the two samples are significantly different, suggesting a relationship between annealing times and the final structure of the alkali fulleride. Variable-temperature 23Na magic-angle spinning (MAS) NMR experiments reveal the existence of two or three distinct sodium species and reversible temperature-dependent diffusion of sodium ions between octahedral and tetrahedral interstitial sites. 13C MAS NMR experiments are used to identify resonances corresponding to free C60 and fulleride species, implying that the samples are segregated-phase materials composed of C60 and non-stoichiometric Na3C60. Variable-temperature 13C MAS NMR experiments reveal temperature-dependent motion of the fullerides.  相似文献   

4.
Silicate Anions in Alkali Silicate Melts Melts of alkali silicates with molar ratios of alkali (Li, Na, K, Cs) to silicon between R = 4.0 and ca. 2.0 were prepared, quenched and worked up to the trimethylsilyl silicic acid esters. These were identified by comparison to the GC and silicon-29 NMR data of trimethylsilyl silicic acid esters from other sources. It was found that with cations of Li and Na mostly linear silicates were formed. But with the cations of K and Cs a considerable amount of the cyclic species Si6O96? was present. Branched silicates were of minor importance only. Besides the alkali silicon ratio, the temperature of the melt before quenching influences the composition of the silicate mixture.  相似文献   

5.
The complex formation of lithium and sodium ions with silicon podand solvents: phenyl-tris(1,4-dioxapentyl) silane (PhSi23) and ethyl-tris(1,4-dioxapentyl) silane (EtSi23) has been studied by FTIR, 1H-, 13C-, 7Li- and 23Na NMR. The far FTIR spectra show that the Li+ cations fluctuate very fast whereas Na+ cations are still localised between the oxygen atoms of the oxaalkyl chains. The 7Li NMR spectra prove that one Li+ cation can be coordinated not only by one but also two silicon podand molecules. The concentration dependence of the molar conductivity of LiClO4 in the podand solvents indicates charge transfer between ion clusters.  相似文献   

6.
7Li-NMR spectroscopy was used to study the complexation of Li+ ion with 12C4, 15C5, C222, C221, C211 in acetonitrile (AN) and its 50% (wt/wt) mixtures with two new room temperature ionic liquids, 1-ethyl-3-methylimidazolium hexafluorophosphate (EMim PF6) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMim BF4) at 298 K. Excluding the cases of Li+-C211 in all solvents and Li+-C221 in AN and 50% (wt/wt) AN-EMim PF6, in other cases, the exchange between free and 1:1 complexed Li+ was fast on the NMR time scale and only a single population average 7Li signal was observed. Formation constants of the resulting 1:1 complexes were evaluated by computer fitting of the chemical shift-mole ratio data and integration of two 7Li signals. All complexes in EMim PF6 were found to be more stable than those in EMim BF4. 7Li-NMR line-shape analysis was used to determine the kinetic parameters and the mechanism for the chemical exchange of Li+ between the free and 1:1 complex with C221 in 50% (wt/wt) AN-EMim PF6 mixtures solution. By comparing our study with the previous one, it is derived that, increasing the percentage of ion liquid in acetonitrile, changes the mechanism and decrease the exchange rate constant of Li+ ion between free and complex sites.  相似文献   

7.
Antimony silicate glasses, of general formula xSb2O3·(1−x)SiO2 (0.1≤x≤0.78), have been prepared by melt-quenching and their structures studied using 29Si MAS NMR spectroscopy, 121Sb Mössbauer spectroscopy and Raman spectroscopy. Oxidation during melting gives rise to Sb5+ in concentrations, which increase linearly with x to give a value of ∼10% when x=0.78. 121Sb Mössbauer spectra show Mössbauer shifts and quadrupole splittings consistent with Sb3+ in a [:SbO3] trigonal pyramid, similar to that in crystalline Sb2O3. A broad band in the Raman spectrum at ∼410 cm−1 is due to the vibrations of such a unit. The dependence of the silicon Qn speciation on x can be interpreted by the formation of Sb-O-Sb links possibly to form rings of 4 [:SbO3] units such as are found in valentinite.  相似文献   

8.
The unusual oxidation state +3 of the thorium has been stabilized into a lithium containing non-stoichiometric mixed-valence (III/IV) thorium fluorinated phase with formula Li2+xTh12F50 (0<x<1.8). This phase is closely related to the Li5.5Ce12F50 one, the structure of which has been determined from the combined single-crystal X-ray diffraction and high resolution synchrotron powder diffraction. In these phases, the Li+ ions can be divided into two groups and are located either in locked positions or in open channels of the three dimensional framework. The amount of Li+ ions in open channels can be variable, so that the afore mentioned single phase may be considered as an insertion compound. The Li+ insertion is accompanied by the simultaneous reduction of a part of the Th4+ ions, resulting in a mixed-valence III/IV thorium fluoride. The electrochemical insertion of Li+ ions into the open channels of the host matrix has been carried out at 60 °C, using an alkylcarbonate PC-LiClO4 1 M electrolyte. The Li+ and Th3+ contents, both in the starting composition and the Li+ inserted ones, were investigated by high resolution solid state 7Li NMR and EPR, respectively.  相似文献   

9.
The complexation of Li+ and Na+ cations by three bis(oxaalkyl) sulphates(IV) was studied by FTIR and NMR on 1H, 13C, 7Li and 23Na nuclei. The NMR results have proved the formation of complexes and the fluctuation of Li+ and Na+ cations in respective circular arrangements. In the FTIR spectra of protonated sulphates intense continuous absorptions were observed indicating fast fluctuation of the protons in the respective multiminima potentials. The continuous absorptions in the far infrared region of the FTIR spectra of Li+ or Na+ complexes with three bis(oxaalkyl) sulphates(IV) indicate fast fluctuations of Li+ or Na+ cations between O-atoms of the oxaalkyl chains. The independence of the shape of the continua on the length of the oxaalkyl chains, i. e. the number of minima in the multiminima potential, demonstrates that the fluctuation of cations occurs in the respective circular arrangements.  相似文献   

10.
The targeted search for suitable solid-state ionic conductors requires a certain understanding of the conduction mechanism and the correlation of the structures and the resulting properties of the material. Thus, the investigation of various ionic conductors with respect to their structural composition is crucial for the design of next-generation materials as demanded. We report here on Li5SnP3 which completes with x=0 the series Li10+4xSn2−xP6 of the fast lithium-ion conductors α- and β-Li8SnP4 (x=0.5) and Li14SnP6 (x=1). Synthesis, crystal structure determination by single-crystal and powder X-ray diffraction methods, as well as 6Li, 31P and 119Sn MAS NMR and temperature-dependent 7Li NMR spectroscopy together with electrochemical impedance studies are reported. The correlation between the ionic conductivity and the occupation of octahedral and tetrahedral sites in a close-packed array of P atoms in the series of compounds is discussed. We conclude from this series that in order to receive fast ion conductors a partial occupation of the octahedral vacancies seems to be crucial.  相似文献   

11.
The oxygen vacancies distribution in the rigid lattice and the thermally activated motion of oxygen atoms are studied in La1−xSrxGa1−xMgxO3−x (x=0.00; 0.05; 0.10; 0.15 and 0.20) compounds. For that 71Ga, 25Mg and 17O NMR was performed from 100 K up to 670 K, and ion conductivity measurements were carried out up to 1273 K. The comparison of the electric field gradients at the Ga- and Mg-sites evidences that oxygen vacancies appear exclusively near gallium cations as a species trapped below room temperature in local clusters, GaO5/2-□-GaO5/2. These clusters decay at higher temperature into mobile constituents of the structural octahedra Ga(O5/61/6)6/2. At the same time, the nearest octahedral oxygen environment of magnesium cations persists at different doping levels. The case of two adjacent vacant anion sites is found highly unlikely within the studied doping range. The thermally activated oxygen motion starts to develop above room temperature as is observed from both the motional narrowing of 17O NMR spectra and the 17O nuclear spin-lattice relaxation rate. The obtained results show that two types of motion exist, a slow motion and a fast one. The former is a long-range diffusion whereas the latter is a local back and forth oxygen jumps between two adjacent anion sites. These sites are strongly differentiated by the probability of the vacancy formation, like the vacant apical site and the occupied equatorial site in the orthorhombic compositions x <0.15.  相似文献   

12.
《Microporous Materials》1995,3(4-5):497-510
23Na Magic-angle spinning (MAS), double rotation (DOR) and two-dimensional nutation nuclear magnetic resonance (NMR) and static 139La NMR spectroscopy were applied to study the location and migration of sodium and lanthanum cations in faujasites. Generally, 23Na MAS NMR spectroscopy of as-exchanged and hydrated zeolites LaNaY was used for the quantitative determination of non-localized Na+ in the large cavities at a 23Na NMR shift of −9 ppm and of sodium cations observed at −13 ppm. The latter originate from Na+ ions located on position SII in the large cavities, on position SI in the hexagonal prisms and on positions SII′ and/or SI′ in the sodalite cages. The 23Na MAS NMR signal at about −13 ppm was found to be caused by two coonents. The component that is characterized by a quadrupolar interaction causing a field-dependent shift and a signal at v1 = 2vrf in the two-dimensional quadrupolar nutation spectra is attributed to Na+ enclosed in the sodalite cages. The 23Na MAS NMR spectra of dehydrated lanthanum-exchanged faujasites are characterized by a low-field Gaussian line of Na+ located on SI positions in the hexagonal prisms and a high-field quadrupole pattern of Na+ located on positions SII and SI′. The migration of lanthanum cations from the large cavities to position SI′ in the sodalite cages was monitored by 139La NMR spectroscopy and verified by a theoretical estimation of the electric field gradient. The lanthanum migration was found to be coupled with a strain of SiOT and AlOT angles observed by 29Si and 27Al MAS NMR high-field shifts, respectively.  相似文献   

13.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

14.
We investigated experimentally the effect of Li intercalation on the structural, microstructural and magnetic properties as well as on the Li ion diffusivity of the complex chalcogenides Cr5?yTiySe8. In addition, the effect of anion substitution in TiS2?zSez on the Li diffusion parameters was studied by 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation measurements.For Cr5?yTiySe8 the Li+ insertion is accompanied by an irreversible phase transition from monoclinic to trigonal symmetry which is electronically driven. The maximal Li content in the host material depends on the Ti content and decreases with increasing y in Cr5?yTiySe8. The intercalated materials can be deintercalated and the minimal Li content in the residual compound increases with Ti abundance. The intercalation process is accompanied by drastic changes of the microstructure. Electrochemical discharge curves depend significantly on the Ti. According to the results of XANES investigations performed on Cr4TiSe8, Ti is first reduced during Li uptake and Cr atoms accept electrons at later stages of the intercalation reaction. In-situ energy dispersive X-ray diffraction experiments show that the Li intercalation at room temperature proceeds via two different mechanisms while intercalation at 60 °C is faster and is dominated by one mechanism. 7Li MAS NMR measurements revealed a variety of transition metal environments around the Li sites corresponding to the Cr/Ti disorder. The NMR studies also indicate fast Li dynamics. The magnetism of the educts is dominated by strong antiferromagnetic exchange interactions in the high temperature region and by spin-glass behavior in the low temperature range. Intercalation of Li weakens the antiferromagnetic exchange and for fully intercalated materials ferromagnetic exchange is observed. The interpretation of the experimental results is supported by accompanying band structure calculations.In layer-structured LixTiS2?zSez (x  0.7) the Li diffusivity was investigated by various NMR techniques and compared with results obtained for the pure end members LixTiS2 and LixTiSe2. In particular, anion substitution clearly influences the slopes of the low-T flanks of the diffusion induced NMR relaxation-rate peaks. The corresponding activation barriers characterizing local hopping processes are reduced in the mixed samples with 0 < z < 2 and can be explained by a domain model. DFT calculations yield very small hopping barriers along S-rich and Se-rich domain boundaries while the barriers for Li migration inside the domains are rather high. It is therefore assumed that Li migrates along the domain boundaries.  相似文献   

15.
Various kinds of aluminum species in dealuminated mordenite were investigated in detail, and the quadrupole coupling constants (QCCs) for aluminum atoms associated with these species were obtained by means of the newly introduced1H/27 AI TRAPWR method as well as27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR). QCC values of 11.3, 15.3, 13.3 and (14.0± 0.6) MHz were determined from the TRAPDOR profiles for Lewis acid sites, Bronsted acid sites (SiOHAl) and two kinds of non-framework aluminum species Al(OH) n , respectively. The source of the “invisible Al” is discussed on the basis of the NMR experimental results.  相似文献   

16.
Investigation of the ion exchange properties of β-eucryptite (LiAlSiO4) single crystals indicates that it is impossible to substitute Li+ by other bigger univalent cations such as Na+, K+, or Ag+. On the contrary, Li+ exchange by bivalent cations, Cu2+ or Mn2+, is very easy. For a general orientation of the crystal with respect to the magnetic field, the EPR spectrum of Cu2+ ions in β-eucryptite consists of 12 sharp lines partially superimposed on a broad line. The sharp lines are attributed to isolated copper ions in the conducting channels. Cu2+ lies in sixfold coordinated Li″ sites, but not in the fourfold coordinated Li″ sites. The corresponding spin Hamiltonian parameters at T = 140 K are found to be: gx = 2.362, gy = 2.340, gz = 1.990; ∥Ax∥ = 85 × 10?4cm?1, ∥Ay∥ = 71 × 10?4cm?1, ∥Az∥ = 203 × 10?4 cm?1. The broad line is attributed to clusters of Cu2+ located in neighboring Li″ sites.  相似文献   

17.
Zusammenfassung An zeolithischen Heptagermanaten der FormelMe 3HGe7O16·xH2O, (Me=NH4, Li, Tl, Cs und Na;x=0–6) wurden Kernresonanzuntersuchungen durchgeführt. Es wurden Messungen an1H und14N in Ammoniumzeolith sowie an7Li,205Tl,133Cs und23Na zwischen Zimmertemp. und der Temperatur des flüssigen Stickstoffs ausgeführt. Es zeigt sich, daß die Kationen Diffusionsbewegungen ausführen, die sowohl durch höhere Temperatur als auch durch das Vorhandensein von Wassermolekülen begünstigt werden.
NMR investigation of zeolitic heptagermanates, II
Zeolitic heptagermanates with compositionMe 3HGe7O16·xH2O, (Me=NH4, Li, Tl, Cs and Na;x=0–6) have been investigated by NMR. Measurements on1H and14N in ammoniumzeolites and on7Li,205Tl,133Cs and23Na have been performed between room temperature and liquid nitrogen temperature. It is observed that the cations execute diffusional motions, which are favoured by higher temperature as well as by the presence of water molecules.


Mit 9 Abbildungen  相似文献   

18.
The alkaline 1-phenyl-1H-1, 2, 3, 4-tetrazole-5-thiolate salts, M[C6H5N4CS] (M = Li ( 1 ), Na ( 2 ), K ( 3 ), Rb ( 4 ) and Cs ( 5 )) were obtained and characterized by means of mass spectrometry (FAB+) and NMR (1H; 13C) spectroscopy. The structures of Na ( 2 ), K ( 3 ), Rb ( 4 ) and Cs ( 5 ) compounds were determined by X-ray diffraction methods. The ligand shows a rich variety of coordination patterns with the alkaline cations. The formation of a four-membered ring MSCN in the compounds with heavier alkali cations (K, Rb and Cs) is shown. In all the cations the coordination number around it increases with the ionic radius. Compounds with Cs+ and Rb+ exhibited the formation of Cs-C and Rb-C interactions with the phenyl group.  相似文献   

19.
Two new non‐metallic filled β‐manganese phases M2Ga6Te10 (M: Li, Na) are obtained as black, homogeneous, microcristalline samples as well as single crystals by direct reaction of the elements. According to the single crystal structure determinations both compounds crystallize in space group R32 (No. 155, Z = 2) with the lattice constants: a = 1436.9(2), c = 1759.0(4) pm (T = 180 K, Li2Ga6Te10) and a = 1458(1) pm, c = 1776.1(4) pm (T = 290 K, Na2Ga6Te10). Their structures are characterized by tetrahedral close packings of Te2–, corresponding to the arrangement of Mn atoms in β‐Mn. While Ga3+ ions are distributed in an ordered way over 12% of the tetrahedral holes, the M+ ions occupy all distorted octahedral (“metaprismatic”) holes. As the Li+ ions are too small they occupy off‐center positions inside the metaprisms. Positions with the strongest off‐centering can only be refined on the basis of a split model. MAS‐NMR measurements, including multiple quantum NMR, allowed the two different crystallographic M+ sites to be distinguished unambigously by separate 7Li and 23Na signals, respectively. The assignment of the NMR signals was supported by measurements of samples in which Li+ was partly substituted by larger cations (Sn2+, Pb2+).  相似文献   

20.
Aromatic copolyamides based on diamino sulfoacids, unsubstituted aromatic diamines, and phthalyl dichlorides were synthesized. Self-diffusion of water and alkaline cations in aqueous Li+, Na+, and Cs+ salts of the iso-polymer (μPA) and Li+ salt of the tere-polymer (πPA) of aromatic bisulfur-containing polyamides was studied by NMR with a magnetic field pulse gradient. A supramolecular structure was formed by hydrogen bonding between the carbonyl and N-H groups of adjacent macromolecules with two water molecules included in them as structure-forming bridges. The oversorbed water was incorporated in the ionogen channels formed by the sulfo groups, counterions, and water molecules. The conclusion was drawn that the structure of ionogen channels was more regular in πPA than μPA. The self-diffusion coefficients of metal cations increase in the series Li < Na < Cs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号