首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)n films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O2; as a result, they are more attractive compared to (CNT/polyelectrolyte)n and (NP/polyelectrolyte)n films because of their multifunctionality.  相似文献   

2.
This paper describes a new strategy through noncovalent functionalization of multi-walled carbon nanotubes (MWNTs) by a kind of new copolymer Polyethyleneimine-graft-Polyacrylonitrile for attaching CdSe nanoparticles onto the MWNTs to fabricate Carbon Nanotube/CdSe heterostructures. Polyethyleneimine (PEI), an amino-rich cationic polyelectrolyte, can interact with the MWNTs through electrostatic interaction. Then, CNT/PEI-g-PAN was successfully prepared by in situ atom transfer radical polymerization (ATRP), which did not introduce defects to the structure of CNTs. Thus, CdSe nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic. TEM, XRD, EDS and FT-IR are all used to characterize the CNT/CdSe composite materials. In addition, the optical properties are investigated by UV–vis spectrum.  相似文献   

3.
In this article, a detailed electrochemical study of a novel 6‐ferrocenylhexanethiol (HS(CH2)6Fc) self‐assembled multiwalled carbon nanotubes‐Au nanoparticles (MWNTs/Au NPs) composite film was demonstrated. MWNTs/Au NPs were prepared by one‐step in situ synthesis using linear polyethyleneimine (PEI) as bifunctionalizing agent. HS(CH2)6Fc, which acted as the redox mediator, was self‐assembled to MWNTs/Au NPs via Au‐S bond. Transmission electron microscopy (TEM), energy‐dispersive X‐ray analysis (EDX), Fourier transformed infrared absorption spectroscopy (FT‐IR), UV‐visible absorption spectroscopy, and cyclic voltammetry were used to characterize the properties of the MWNTs/Au NPs/HS(CH2)6Fc nanocomposite. The preparation of the nanocomposite was very simple and effectively prevented the leakage of the HS(CH2)6Fc mediator during measurements. The electrooxidation of AA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique performance of MWNTs/Au NPs. The nanocomposite modified electrode exhibited excellent catalytic efficiency, high sensitivity, good stability, fast response (within 3 s) and low detection limit toward the oxidation of AA at a lower potential.  相似文献   

4.
Well-aligned ZnO nanorods (NRs) were grown on indium-tin-oxide (ITO) slide by the hydrothermal method and used as templates for preparing ZnO/Au composite nanoarrays. The optical and morphological properties of ZnO/Au composites under various HAuCl(4) concentrations were explored via UV-vis absorption spectroscopy, photoluminescence (PL) and scanning electron microscopy (SEM). The density and size of gold nanoparticles (Au NPs) on ZnO NRs can be controlled by adjusting the concentration of HAuCl(4). The optimal ZnO/Au composites display complete photocatalytic degradation of methyl blue (MB) within 60 min, which is superior to that with pure ZnO NRs prepared by the same method. The reason of better photocatalytic performance is that Au NPs act as electron traps and it prevents the rapid recombination of electrons and holes, resulting in the improvement of photocatalytic efficiency. The photocatalytic performance of ZnO/Au composites is mainly controlled by the density of Au NPs formed on ZnO NRs. The application in rapid photodegradation of MB shows the potential of ZnO/Au composite as a convenient catalyst for the environmental purification of organic pollutants.  相似文献   

5.
A hybrid preparative method was developed to prepare organosulfur-functionalized Au nanoparticles (NPs) on silicon nanowires (SiNWs) by reacting HAuCl(4) with SiNW in the presence of thiol. A number of organosulfur molecules-dodecanethiol, hexanethiol, 1,6-hexanedithiol, and tiopronin-were used to functionalize the Au surface. Size-selected NPs ranging from 1.6 to 7.5 nm were obtained by varying the S/Au ratio and the concentration of HAuCl(4). This method was further extended to the preparation Pd and Pd-Au bimetallic NPs on SiNWs. The morphology of the metal nanostructures was examined by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The local structure and bonding of the SiNW-supported metal nanostructures were studied using X-ray absorption fine structures (XAFS) [including both X-ray near-edge structures (XANES) and extended X-ray absorption fine structures (EXAFS)] at the Au L(3)-, Pd K-, S K-, and Si K-edges. It was also found that the annealing of the thiol-capped Au NPs up to 500 degrees C transforms the surface of the thiol-capped NPs to gold sulfide, as identified using Au L(3)- and S K-edge XANES. We also illustrate that this preparative approach can be used to form size-controllable Au NPs on carbon nanotubes.  相似文献   

6.
A hybrid material based on Pt nanoparticles (Pt NPs) and multi-walled carbon nanotubes (MWNTs) was fabricated with the assistance of PEI and formic acid. The cationic polyelectrolyte PEI not only favored the homogenous dispersion of carbon nanotubes (CNTs) in water, but also provided sites for the adsorption of anionic ions PtCl42− on the MWNTs’ sidewalls. Deposition of Pt NPs on the MWNTs’ sidewalls was realized by in situ chemical reduction of anionic ions PtCl42− with formic acid. The hybrid material was characterized with TEM, XRD and XPS. Its excellent electrocatalytic activity towards both oxygen reduction in acid media and dopamine redox was also discussed.  相似文献   

7.
We report the synthesis of highly catalytic spherical carbon composite particles with Au-Pd bimetallic nanoparticle doping using a microwave-assisted technique that allows control over the location of the nanoparticles (NPs), putting them into stable interior, but still near-surface locations (within a 100 nm thick shell). First, composite particles with Pd NPs inside of nanoporous carbon spheres (CSs) were synthesized. Subsequent immersion of the composite particles in HAuCl(4) solutions containing PVP led to an addition of Au near the Pd. Au-Pd/CS composites with Au:Pd atomic ratios varying from 0.4 to 4.6 were prepared. The growth of Au and its location relative to the carbon's surface and the Pd are discussed. The catalytic activity towards the reduction of 4-nitrophenol is tunable via the Au:Pd atomic ratio. Optimizing the composition increases the activity a hundredfold over that of the corresponding monometallic Pd/CS. The catalytic activity arises from the synergy between different contributing mechanisms, here especially the interaction between the carbon matrix and metals, metal-metal interfaces, and the hydrogen absorption capabilities of Pd.  相似文献   

8.
We report a method to prepare composites based on carbon nanotubes (CNTs) and CeO2 nanoparticles (NPs). The CeO2 NPs were attached to CNTs by hydrothermal treatment of Ce(OH)4/CNT mixture in NaOH solution at 180 °C. It was found that larger CeO2 NPs were formed in the presence of CNTs. Grain size of CeO2 NPs in the composites can be reduced when NaNO3 was added in the hydrothermal process. Electrochemical characterizations have shown that the composites possess a specific capacity between those of CNTs and CNTs mechanically mixed with CeO2. These CeO2/CNT composites could serve as promising anode materials for Li-ion batteries.  相似文献   

9.
以两步聚合法合成的聚苯乙烯(PS)/聚丙烯酸(PAA)核-壳结构复合微凝胶为载体, 硼氢化钠为还原剂, 柠檬酸钠为稳定剂, 通过原位控制性还原获得pH敏感性微凝胶负载纳米金粒子的PS/PAA-Au复合材料. 研究发现, 不同酸碱条件时, 复合微凝胶壳层高分子链的溶胀/收缩变化, 不仅可以调节纳米金粒子的表面等离子吸收, 还可以调节反应底物的扩散传质, 即借助载体微环境的变化来调控纳米金光学性能和催化性能, 从而实现复合纳米金材料的pH调控性.  相似文献   

10.
The palladium and gold precursors were dissolved in dispersive and continuous phase of ionic liquid microemulsion (H2O/Triton X-100 (TX-100)/1-butyl-3-methylimidazolium hexafluorophosphate), respectively. [PdCl6]2? ions were reduced in situ by TX-100 in dispersive phase (H2O) to prepare Pd nanoparticles (NPs) and then [AuCl4]? crossed through the interface film and reacted with the as-prepared Pd NPs to form Pd4Au NPs. The as-prepared Pd4Au NPs were characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The as-prepared Pd4Au NPs suspension and carbon nanotubes (CNTs) suspension were vigorously stirred to prepare the electrocatalyst supported on the CNTs with a total metal loading of 20?wt.% (denoted by Pd4Au/CNTs). Cyclic voltammetry and chronoamperometry tests show that the Pd4Au/CNTs are very promising for the oxidation of ethanol in alkaline medium. The result can be attributed to the synergistic effect between Pd and Au during the catalytic process.  相似文献   

11.
A signal‐enhanced immunosensor has been developed by self‐assembling Au NPs onto a ferrocene‐branched poly(allylamine)/multiwalled carbon nanotubes (PAA‐Fc/MWNTs) modified electrode for the sensitive determination of hepatitis B surface antigen (HBsAg) as a model protein. The formation of PAA‐Fc/MWNTs composite not only effectively avoided the leakage of Fc and retained its electrochemical activity, but also enhanced the conductivity and charge‐transport properties of the composite. Further adsorption of Au NPs into the PAA matrix provided both the interactive sites for the immobilization of hepatitis B surface antibody (HBsAb) and a favorable microenvironment to maintain its activity. Tests performed with this immunosensor showed a specific response to HBsAg in the range of 0.1–350.0 ng mL?1 with a detection limit of 0.03 ng mL?1.  相似文献   

12.
Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.  相似文献   

13.
Branched poly(ethylenimine) (PEI)-capped Au nanoparticles are prepared at room temperature using PEI as the reductant of hydrogen tetrachloroaurate (HAuCl4). The size of Au nanoparticles, ranging from 10 to 70 nm, is readily controlled by varying the relative amount of PEI used initially versus HAuCl4. The PEI-capped Au nanoparticles are further demonstrated to be assembled into a large area of 2-D aggregates at a toluene-water interface either by heating the mixture or by adding benzenethiol to the toluene phase at room temperature. Both films are quite homogeneous, but Au nanoparticles appear to be more closely packed in the film assembled via the mediation of benzenethiol. The optical property of the PEI-capped Au films is controlled by the amount of benzenethiol added to the toluene phase. The obtained large area of PEI-capped Au film exhibits strong SERS activity of benzenethiol and also exhibits a very intense SERS spectrum of 4-nitrobenzenethiol via a place-exchange reaction that takes place between benzenethiol and 4-nitrobenzenethiol. Because the proposed method is cost-effective and is suitable for the mass production of diverse Au films irrespective of the shapes of the underlying substrates, it is expected to play a significant role in the development of optical nanotechnology especially for surface plasmon-based analytical devices.  相似文献   

14.
Polymer crystallization-driven, periodic patterning on carbon nanotubes   总被引:4,自引:0,他引:4  
We report herein a unique means to periodically pattern polymeric materials on individual carbon nanotubes (CNTs) using a controlled polymer crystallization method. One-dimensional (1D) CNTs were periodically decorated with polymer lamellar crystals, resulting in nano-hybrid shish-kebab (NHSK) structures. The periodicity of the polymer lamellae varies from 20 to 150 nm. The kebabs are approximately 5-10 nm thick (along CNT direction) with a lateral size of approximately 20 nm to micrometers, which can be readily controlled by varying crystallization conditions. Both polyethylene and Nylon 66 were successfully decorated on single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), as well as vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to "size-dependent soft epitaxy". Because NHSK formation conditions depend on CNT structures, it further provides a unique opportunity for CNT separation. The reported method opens a gateway to periodically patterning polymers and different functional groups on individual CNTs in an ordered and controlled manner, an attractive research field that is yet to be explored.  相似文献   

15.
低热固相法制备纳米MnO2/CNT超电容复合电极的循环稳定性   总被引:1,自引:0,他引:1  
为了改善纳米MnO2超级电容器电极的充放电循环稳定性,以Mn(OAc)2·4H2O、NH4HCO3和碳纳米管(CNT)为原料,采用低热固相反应得到前驱体,再经焙烧和酸处理,制备了一系列CNT含量不同的纳米MnO2/CNT复合电极材料,并用X射线衍射(XRD)、透射电镜(TEM)和Brunauer-Emmett-Teller(BET)比表面积测定方法对其进行了表征.XRD分析结果表明,复合材料中的MnO2为纳米γ-MnO2.研究了复合电极在1 mol·L-1 LiOH电解质中的电化学性能,并与不含CNT的纯纳米MnO2电极进行了比较.结果表明,含CNTs为10%(w,质最分数,下同)和20%的MnO2/CNT复合电极的循环稳定性远优于纯纳米MnO2电极的循环稳定性,其中含10%CNTs的MnO2/CNT复合电极不仪具有良好的循环稳定性,而且在1000 mA·g-1高倍率充放电条件下仍具有200 F·g-1的高比电容.  相似文献   

16.
The ability to capture, store, and use CO2 is important for remediating greenhouse‐gas emissions and combatting global warming. Herein, Au nanoparticles (Au‐NPs) are synthesized for effective electrochemical CO2 reduction and syngas production, using polyethylenimine (PEI) as a ligand molecule. The PEI‐assisted synthesis provides uniformly sized 3‐nm Au NPs, whereas larger irregularly shaped NPs are formed in the absence of PEI in the synthesis solution. The Au‐NPs synthesized with PEI (PEI?Au/C, average PEI Mw=2000) exhibit improved CO2 reduction activities compared to Au‐NPs formed in the absence of PEI (bare Au NPs/C). PEI?Au/C displays a 34 % higher activity toward CO2 reduction than bare Au NPs/C; for example, PEI?Au/C exhibits a CO partial current density (jCO) of 28.6 mA cm?2 at ?1.13 VRHE, while the value for bare Au NPs/C is 21.7 mA cm?2; the enhanced jCO is mainly due to the larger surface area of PEI?Au/C. Furthermore, the PEI?Au/C electrode exhibits stable performance over 64 h, with an hourly current degradation rate of 0.25 %. The developed PEI?Au/C is employed in a CO2‐reduction device coupled with an IrO2 water‐oxidation catalyst and a proton‐conducting perfluorinated membrane to form a PEI?Au/C|Nafion|IrO2 membrane‐electrode assembly. The device using PEI?Au/C as the CO2‐reduction catalyst exhibits a jCO of 4.47 mA/cm2 at 2.0 Vcell. Importantly, the resulted PEI?Au/C is appropriate for efficient syngas production with a CO ratio of around 30–50 %.  相似文献   

17.
A methodology for improving antistatic property of polyetherimide (PEI) composite using polyaniline (PANI) grafted multi‐walled carbon nanotubes (MWNTs) as conductive medium was proposed. First, the MWNTs grafted with PANI (PANI‐g‐MWNTs) were prepared by in‐situ polymerization in an emulsion system. Subsequently, PANI‐g‐MWNTs were blended with PEI using N‐methyl‐2‐pyrrolidone as solvent. After removing the solvent, the PEI/PANI‐g‐MWNT composite was prepared. As assisted conductive medium, the grafted PANI molecular chains on MWNT surface were dispersed in the PEI matrix to decrease the percolation value of the antistatic composites. The structure and morphology of PANI‐g‐MWNTs were characterized by Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X‐ray powder diffraction, respectively. The dispersion of PANI‐g‐MWNTs in PEI matrix was studied by scanning electron microscope. The electrical performance was characterized by highly resistant meter. The volume resistivity of the conductivity percolation threshold was 1.781 × 10?8 S/cm when the loading of PANI‐g‐MWNTs was 1.0 wt%. The conductivity of PANI‐g‐MWNTs/PEI composites was found to be higher than that of pristine MWNTs/PEI composite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Using multiwalled carbon nanotubes (MWNTs) as templates, noble metal (Au, Ag, Pt or Pd) nanoparticles (NPs) were fabricated in situ by electrochemistry with a diameter of 40–60 nm. Further, catalytic behaviors of these composite materials were investigated. Experiments showed that such carbon nanotubes decorated with Pd NPs modified glassy carbon electrodes exhibited higher electrocatalytic ability to some molecules such as evolution of hydrogen, reduction of oxygen and oxidation of ascorbic acid. Atomic force microscopy, X‐ray photoelectron spectroscopy and cyclic voltammetry were used to characterize the film formation and their properties.  相似文献   

19.
Growth of aligned carbon nanotubes (CNTs) on electrically conductive substrates is promising for many applications; however, the lack of complete understanding of the substrate effects on CNT growth poses a lot of technical challenges. Here, we report the direct growth of aligned multiwalled nanotubes (MWNTs) on chemically treated stainless steel (Type 304) using a chemical vapor deposition (CVD) process. A detailed X-ray photoelectron spectroscopy (XPS) analysis has been carried out for the various treated samples in order to better understand the correlation between the surface properties of the substrates and the MWNT growth. The XPS studies revealed that the CNTs prefer to grow on the enriched surface of iron oxides obtained by the chemical treatment rather than on the passive chromium oxide films present on the surface of the as-received stainless steel substrates. The density and alignment of the MWNTs could therefore be controlled by tuning the ratio of the iron oxides to chromium oxides through the chemical treatment on the stainless steel surfaces. On the basis of this method, selective growth of CNT patterns on stainless steel has also been demonstrated.  相似文献   

20.
Electrowetting is one approach to reducing the interfacial tension between a solid and a liquid. In this method, an electrical potential is applied across the solid/liquid interface which modifies the wetting properties of the liquid on the solid without changing the composition of the solid and liquid phases. Electrowetting of aligned carbon nanotube (CNT) films is investigated by the sessile drop method by dispensing deionized (DI) water or 0.03 M NaCl droplets (contacted by Au wire) onto aligned CNT films assembled on a copper substrate. The results demonstrate that electrowetting can greatly reduce the hydrophobicity of the aligned CNTs; the contact angle saturation for DI water and 0.03 M NaCl droplets occurs at 98 and 50 degrees , respectively. The combined effects of the geometrical roughness and the electrical potential on the contact angle are briefly discussed and modeled. Such a strategy may be invoked to controllably reduce the interfacial tension between carbon nanotubes (CNTs) and polymer precursors when infiltrating the monomers into the prealigned nanotube films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号